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ABSTRACT

Surface shape control techniques are applied to many diverse disciplines, such as
adaptive optics, noise control, aircraft flutter control and satellites, with an objective to
achieve a desirable shape for an elastic body by the application of distributed control forces.
Achieving the desirable shape is influenced by many factors, such as, actuator locations,
sensor locations, surface precision and controller performance. Building prototypes to
complete design optimizations or controller development can be costly or impractical. This
shortfall, puts significant value in developing accurate modeling and control simulation
approaches. This thesis will focus on the field of adaptive optics, although these
developments have the potential for application in many other fields.

A static finite element model is developed and validated using a large aperture
interferometer system. This model is then integrated into a control model using a linear
least squares algorithm and Shack-Hartmann sensor. The model is successfully exercised
showing functionality for various wavefront aberrations. Utilizing a verified model shows
significant value in simulating static surface shape control problems with quantifiable
uncertainties.

A new dynamic model for a seven actuator deformable mirror is presented and its
accuracy is proven through experiment. Bond graph techniques are used to generate the

state space model of the multi-actuator deformable mirror including piezo-electric actuator
dynamics. Using this verified model, a robust multi-input multi-output (MIMO) H_

controller is designed and implemented. This controller proved superior performance as

compared tQ a standard proportional-integral controller (PI) design.
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CHAPTER 1 - INTRODUCTION

1.1 Introduction

Surface shape control techniques are applied to many diverse disciplines, such as
adaptive optics, noise control, aircraft flutter control and satellites, with an objective to
achieve a desirable shape for an elastic body by the application of distributed control forces.
Depending on the system, many factors contribute to the ability to achieve the desirable
shape, such as actuator locations, sensor locations, surface precision and controller
characteristics. For example, in adaptive optics systems, mirror surfaces are precision
machined and polished to nanometer tolerances and assembly techniques are utilized to
reduce errors to a corresponding level. Accordingly, controllers must be designed to
maintain a similar level of precision to achieve accurate surface shape control in the
presence of disturbances.

Although surface shape control is applied to diverse fields, this application will

focus on adaptive optics systems. However, the general nature of this work will allow it
the potential for application in many other fields. As such, the purpose of this thesis is to
develop validated static and dynamic models for control purposes, and then to investigate

the use of a modern multi-input multi-output control approach for dynamic surface shape

control.

1.2 Literature Search

Over the past four decades, surface shape control techniques have been applied to
many diverse technical areas. These include, but are not limited to, adaptive optics
(Creedon and Lindgren, 197Q; Apollonp\{z et al, 199O,C«111‘a_1ri?pa and Clgysrnith, 1981;_
Ealey, 1991), noise control for marine vessels and aircraft fu::l;ge panels (Dimitriadis and

Fuller, 1989; Walker and Yaneskek, 1976a), aircraft flutter control (Livne and Wei-Lin,

1995) and space technology such as satellite antennas (Junkins, 1990). The object of



surface shape control is to achieve a desirable shape for a given elastic body by the
application of distributed control forces and/or displacements. Due to the diverse technical
areas in which surface shape control is utilized, an extremely large body of literature exists
in various fields. Fortunately, three literature review summaries were recently published.
Junkins (1990) edited the book Mechanics and Control of Large Flexible Structures, which
included an update of a literature review completed in 1984 and work in the area of shape
control. The majority of this work focused on space related structures. Another
comprehensive literature review was completed by Meirovitch (1990). In his review,
Meirovitch covered many topics related to modeling and control of structures for a variety
of applications. Lastly, Tyson (1998) reviews the concept of shape control related to
adaptive optics in his book Principles of Adaptive Optics. Despite the large body of
existing literature, two areas have received relatively little attention. Those being the issue
of actuator and sensor dynamics and their role in the overall system performance
(Meirovitch, 1990), and the issue of dynamic~actuator coupling and its effect on
controllability. A deep understanding of both ufsskese-issues is essential for adaptive optic
systems to meet future more stringent requirements.

Dynamic modeling has been researched for both SISO and MIMO systems.
Related to adaptive optics, Marlow (1994) developed the electro-mechanical equations
governing the motion of the surface of a deformable mirror for a single actuator. Wirth and
Jankevics (1993) use two approaches to model a multi-actuator deformable mirror. First,
they assume the deformable mirror is represented by a nondiagonal matrix and ignore high
frequency dynamics. The second approach is an experimental technique using the extended
Kalman filter to estimate the state variables. Creedon and Lindgren (1970) develop the
dynamic equations of a deformable -mirror using' a medal expansion technique. This
approach neglected any actuator dynamics. Livne and Wei-Lin (1994) utilize rational
function approximations to develop a linear time invariant state space model of

aeroservoelastic systems. This model was used to examine wing/control surface shape



optimizations. Related specifically to modeling of combined dynamical systems, that is
systems comprised of both distributed mass components and point masses, many different
approaches are available for use, each having their own advantages and disadvantages.
These methods include, but are not limited to, finite elements (Vincent, et al, 1990), finite
difference, and classical modal techniques (Margolis, 1976; Nicholson and Bergman,
1986). For dynamic systems, the normal mode approach has an advantage over both finite
difference and finite element models by requiring relatively few equations, which helps
significantly when developing models for control simulation. Margolis (1980) showed that
the normal mode approach model required 1/10 the number of equations as a finite
difference model while producing indistinguishable results. However, one disadvantage of
the normal mode approach is that no analytical solution exists for many complex models,
such as plates.

Concerning static model development, authors have considered both numerical
models, such as finite elements (Furber, etat, 1994a; Bigelow, et al, 1994), and analytical
models, such as Gaussian functions (Ealeyretsal;- 1991; Tyson, 1998) and higher order
functions (Apollonov, et al, 1990). Dimitriadas and Fuller (1990) utilize analytical
techniques to solve for the static shape of a circular plate with edge bending moments for
controlling sound transmission. When exact solutions do not exist, the errors associated
with using most analytical functions are related to the boundary conditions and the so called
pinning error effect (Hiddleston, et al, 1991). Numerical approaches, such as the finite
element method, do not have these deficiencies since they maintain continuity in
displacement, slope and higher derivatives between elements. Therefore, the finite element
method seems to be the preferred approach due to its accuracy, flexibility and the
availability of commercial software. B L =t

Research related to the development of control approaches vary significantly and
can be split between static and dynamic control. Static control approaches have been

applied to many diverse fields (Meirovitch, 1990), and therefore this review will emphasize



static surface shape control. Static shape control has an objective to achieve a desirable
shape of an elastic body to minimize some criteria. Salmon, et al, (1993), Furber, et al,
(1994a) and Tyson (1998) utilized a least squares surface shape control algorithm to
minimize the wavefront error in an optical system. Dimitriadis and Fuller (1990) developed
a cost function based on the integral of the squared pressure amplitude to minimize sound
transmission from a plate. Other authors have researched surface shape optimizations,
such as actuator and sensor locations (Shishakov and Shmal'gauzen, 1992; Bushnell,
1979) to minimize a surface fitting error. Lyakhov (1994) and Creedon, et al, (1970)
discuss issues related to the number and placement of actuators based on geometric
considerations.

There are a significant number of dynamic control approaches for SISO and MIMO
systems. In general, these control approaches are for any feedback control system, not just
surface shape control. When considering a control approach, stability, performance and
robustness must be evaluated (Mayne, 1996)." SISO examples include but are not limited
to, P.I.D (Banyasz and Keviczky, 1993¥=opiimal control (Schaechter, 1981) , sliding
mode control (Slotine and Li, 1991) and adaptive control (Astrom, 1983). The classical
P.ID. control algorithm gives good physical insight, however lacks robustness
characteristics found in more modern control approaches (Meirovitch, 1990). Schaechter
(1981) presents an optimal local control algorithm for flexible structures. This work uses
local state information to synthesize required forces which are proportional to curvature and
curvature rate. No information is provided about robustness. Slotine and Li (1991)
presented sliding mode control which guarantees a feedback controller which is robust to
the uncertainty of the model. Lastly, Astrom (1983) overviews adaptive control with
emphasis on model reference adaptive systems and-self-tuning regulators. Some popular
adaptive techniques are gain scheduling, model reference and self-tuning regulators.

Balas and Doyle (1990), Hyde and Seering (1991), Blanton and Sadek (1992),

Fanson, et al (1990), Schaechter (1981), Vincent, et al, (1990) and Silverberg and Weaver



(1996) have investigated various control problems related to flexible structure or plates.
Vincent, et al, (1990) developed a controller to have a flexible plate mimic a rigid one. This
work focused on sensor and actuator placement based on controllability and observability.
Blanton and Sadek (1990) developed an optimal controller to actively dampen undesirable
transient vibrations of a rectangular plate by minimizing the total energy. Lastly, Balas and
Doyle (1990) discussed designing linear control algorithms for flexible structures with
emphasis on physical system uncertainty. Furthermore, robustness and performance
tradeoffs are discussed relative to system model uncertainties.

Fewer approaches have been developed and utilized for MIMO systems. Examples

include but are not limited to, H_, synthesis (Safonov, et al, 1990), Q-factorization (Sueur

and Dauphintanguy, 1991) and Youla synthesis (Brewer, 1995). Although the controller
synthesis approaches vary significantly, in general they attempt to accomplish the same

goals (e.g., robustness, disturbance rejection, tracking, stability). Safonov, et al, (1990)

presented a H_ robust controller synthesis for a large space structure and showed its
TR e v e

robustness to model uncertainty. Brewer (1995) presented the Youla synthesis technique
which allows the direct evaluation of actuator saturation or required effort for input noise

and disturbances.

1.3 Problem Statement and Objective

A more focused approach on static and dynamic modeling and control of
deformable mirrors has the potential to allow the development of higher precision systems
and to enable deformable mirrors to meet the anticipated more stringent requirements of the
near future. Current published modeling approaches focus on static design parameters
which have little use in control simulation (Ealey and Wellman, 1991) or lack reasonable

physical correlation to the actual system for design purposes (Gully, et al, 1994).

Furthermore, use of validated static and dynamic models for precision surface shape



control and optimization is lacking. Concerning the more stringent requirements, as sensor
technology improves, operating closed-loop bandwidths on the order of tens of kilohertz
are expected. This can only be accomplished with the ability to control deformable mirror
open loop response to better precision.

This research can be split into two distinct areas: 1) development of a static finite
element model, model verification, and implementation of a static controller and 2)
development of a dynamic model, model verification, and implementation of a modern
dynamic controller. Accordingly, this thesis is organized as follows. Chapter 2 overviews
adaptive optics systems utilizing the National Ignition Facility (NIF) adaptive optic system
as a specific example. The three major adaptive optic components discussed are the
deformable mirror, sensor and electronic controller. Chapter 3 covers the development and
validation of a static model. The finite element method is used to develop the model and an
interferometric facility at Lawrence Livermore National Laboratory is used to acquired data
on the NIF prototype deformable mirror for inodel validation. In Chapter 4, a static control
approach is implemented using the valideied model from Chapter 3. The control model is
based on a linear least squares approach and the sensor is based on a Shack-Hartmann
(Tyson, 1998). Using the control model, typical aberrations are corrected to show model
performance and functionality. In Chapter 5, dynamic models are developed of the NIF
prototype deformable mirror. Bond graph techniques are utilized to develop the dynamic
equations of motion and Raytheon Optical Systems, Incorporated mechanical measurement
facility is utilized to acquired data for model validation. In Chapter 6, single-input single-
output (SISO) and multi-input multi-output (MIMO) controllers are developed and

implemented utilizing the validated models from Chapter 5. Standard proportional-integral

(PI) and modern H,, controller designs are implemented and results compared. Lastly,

Chapter 7 includes a summary and recommendations are made for continued research.



CHAPTER 2 - OVERVIEW OF ADAPTIVE OPTICS SYSTEMS

2.1 Introduction

The purpose of this chapter is to introduce the field of adaptive optics, which will
include the deformable mirror, sensor and controller. For a specific example, the National
Ignition Facility (NIF) adaptive optics system will be used for reference. The first section
will cover the background of adaptive optics. Next, the National Ignition Facility adaptive
optics system will be overviewed. The third section will cover various deformable mirrors,
including the NIF prototype deformable mirror.  Lastly, controller and sensor

configurations will be discussed.

2.2 Background

The optics industry, since the development of the laser in the 1950's, has strived to
achieve optical components and systems with near diffraction limited performance. As the
laser improved in terms of power afitf Beant quality, time-varying distortions induced by
laser gain medium and non-linearities, thermal blooming and atmospheric turbulence
impeded system performance. Due to these problems, a new generation of adaptive optics
were developed, which included the development of the deformable mirror. The
deformable mirror is an early application of surface shape control. In general, a deformable
mirror is comprised of a planar facesheet with actuators attached to the back surface to
provide transverse surface displacements. The first continuous facesheet deformable
mirror was developed by Perkin Elmer Corporation in 1970 for NASA. Following this
original development, several companies (e.g., Hughes, United Technologies, Rockwell,
Lockheed, Itek) developed their own deformable mirrors for both high energy laser
systems and atmospheric compensation throughout the 1970's (Ealey, 1991). The 1980's
saw defense funding push the specialized development and performance of deformable

mirrors to a new level. Some of the leaders in this technology were Itek and United



Technologies Optical Systems. The late 1980's and 1990's has seen a continued interest in
the development of a variety of deformable mirrors for high energy laser systems, such as
the National Ignition Facility, and astronomical applications, such as the Keck observatory.

Although, as evident by the above discussion, much work has been completed in
the development of deformable mirrors, there are still some areas which are relatively
unexplored, lack significant analysis, or lack experimental verification. Two areas which
fall in this category are system modeling and control simulation. This lack of analysis can
be attributed to the complexity of these systems and general satisfaction with current
system’s performance. From a static correction approach, the lack of experimentally
validated models increases the risk and cost of developing optimized designs. This typically
occurs due to the extraordinary cost of equipment needed for experiments. From a
dynamic correction approach, bandwidth requirements for most deformable mirrors are
under the mechanical resonant frequencies, or controller/sensor limitations restrict
bandwidths from reaching deformable miiror mechanical resonances. However, as
discussed by Lillard (1994), mechsmeat-résonances have shown to be the performance
limiting factor. Furthermore, as controller and sensor technologies progress, deformable
mirror dynamic characteristics will become increasingly important. The complexity of the
deformable mirror system has also limited the activity in the area of modeling and control
simulation. The continuous facesheet coupled wifh discrete actuators makes modeling of
the system very challenging. Furthermore, with typically 10 plus actuators and 10 plus
sensors, the MIMO (Multi-Input Multi-Output) control problem is computationally

intensive (Tyson, 1998).



2.3 National Ignition Facility Adaptive Optics System

The National Ignition Facility’s (NIF) adaptive optics system will be used as a
representative system to help illustrate the major components utilized in this thesis, the
deformable mirror, sensor and controller.

The National Ignition Facility (NIF), currently under construction by the
Department of Energy at Lawrence Livermore National Laboratory, is a mega-Joule class
laser and target irradiation facility for investigating the physics associated with stockpile
stewardship and inertial confinement fusion (ICF). It is designed to produce 1.8 MJ of
frequency-tripled radiation (351 nm) in 192 independently focusable beams, each with an
amplifier system that has a square clear aperture of approximately 40 cm x 40 cm (15.7 in x
15.7 in.). These amplifiers have aberrations that contribute to the net wavefront and affect
both conversion efficiency of the frequency converters and the size of the focus spot on the
target. An adaptive optics system is utilized to address static aberrations in the main beam
line and precorrect dynamic aberrations induced in the main power amplifiers so that NIF
can meet requirements for its coiriiezzion efficiency and focus spot size (Winters, et al,
1998). The adaptive optic system comprises a deformable mirror, wavefront sensor,
reference source and controller electronics, and one is depicted in Figure 2.1 for a single

beam line (Zacharias, et al, 1998).

Next, using Figure 2.1, the path of the N IF beam is first summarized, and then the

adaptive optics functions will be discussed. The NIF preamplifier 1 (1.053 pm) beam,

where o is the frequency of the laser, enters the main laser chain near the focus of the

transport spatial filter (TSF), directed away from the target. The beam exits the filter as a
collimated beam that passes through the boost amplifier heading towards the laser main
amplifier cavity. A Pockel cell is set to allow the beam to enter the cavity, where it makes
four passes through the main amplifier before the Pockel cell is switched to allow the beam

to exit. The beam then exits the cavity, passes through the boost amplifier and the TSF and



heads towards the target chamber. The beam is frequency-converted to 3 (351 nm) at the

target chamber (Zacharias, et al, 1998). The adaptive optics functions are implemented as
follows. A continuous wave (cw) beam is co-aligned with the NIF beam prior to injection
into the main laser. The probe beam follows the NIF beam path. A 39-actuator large
aperture deformable mirror operates at the far end of the laser cavity where the beam
bounces twice. At the TSF output, a tilted sampling surface reflects a small fraction of the
beam towards a pick-off mirror near the TSF focus that sends the sampled beam through
relays to the Output Sensor. Within the Output Sensor, a 77-lenslet Hartmann sensor
measures the wavefront. The Hartmann sensor’s video output is read by a frame-grabber
in the wavefront control computer. The computer calculates the surface displacements to be

applied to the deformable mirror to correct the wavefront aberrations in the beam.

Hartmann sensor,
interferometer, or TAS

P

wavefront »sgm;lp_l_ing surface near SF4

fiber optic wavefront reference source

deformable mirror

/

cw laser for closed-
wavefront sensor in loop operation
output sensor package

Figure 2.1 Adaptive optic components for a single chain of NIF (Zacharias, et al, 1998)

2.4 Deformable Mirror Configurations
The deformable mirror (DM) in general can be defined as a multiple channel

continuous surface device, which utilizes discrete position actuators, discrete force

10



actuators or bending moment actuators. Figure 2.2 depicts typical segmented and
continuous active mirrors. Utilizing a mechanical means of deformation, these continuous
surface mirrors deform to match a conjugate wavefront. The actuators can be continuous,
as in a bimorph mirror, or discrete as in discrete actuator mirrors. This work will focus on

the discrete actuator type deformable mirror configuration.

Types of Active Mirrors

Segmented Mirrors

V22222227277

Piston only Piston plus tiit

Continuous Thin-Plate Mirrors

Adal actuators Bending moment
actuators

Figure 2.2 Typical segmented and continuous active mirrors (Ealey, et al, 1991)
Discrete actuator deformable mirrors with stacked piezoelectric actuators were first
developed in the late 1970's to address large stroke requirements and these are depicted in
Figure 2.3. Since this early development, research has continued in many areas, e.g.,
actuator development to produce low voltage low hysteresis actuators, coating development
to allow use in high power laser systems, and actuator spatial compactness to maximize the
number of degrees of freedom per unit ;\reé bf(’)r atmospheric applications (Tyson, 1998).

Actuators for these discrete actuator deformable mirrors generally fall into one of

two categories; force actuators and displacement actuators. The most common material

11



used for actuators are piezoelectric ceramics (Ealey, et al, 1994). These actuators have
response times of 10 to 100 microseconds (Giurgiutiu, et al, 1995). For lower frequency
correction, various wormgears and dc motors, hydraulic and ballscrews drives have been
used to drive mirror surfaces.

The deformable mirror surface shape is defined by each of its actuators’ influence
function. The influence function is defined as the surface displacement when one actuator
is displaced and all others are held constant. The influence function is a function of the
mirrors faceplate parameters such as thickness, modulus of elasticity and Poisson's ratio.

The NIF prototype deformable mirror, shown in Figure 2.4, is based on a discrete
type actuator approach. This mirror has a clear aperture of 400 mm x 400 mm (15.7 in. x
15.7 in.), uses thirty-nine electrostrictive actuators and has a 11 mm (0.43 in.) thick

Zerodur faceplate (La Fiandra, et al, 1998).

W .

Piezoelectric Mirrors

ot § —
AN A R AIIIIINID
Mpnolithic Stacked actuator f&‘.','s..a'e
piezoelectric deformable

mirror (MPM) mirror (SADM)

J

Vo Wa W WU~

I

LLL
Floating mirror : Low voltage
multilayer monolith electrodistortive
(FMB3) Cemmpwez o mirror (LVEM)

Figure 2.3 Different piezoelectric mirrors (Ealey, et al, 1991)
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Figure 2.4 NIF prototype deformable mirror

2.5 Sensor Configuration

Many wavefront sensing approaches exist with sufficient spatial resolution and
bandwidth to achieve closed loop operation. In general, these can be separated into a direct
and indirect sensing approaches. The direct approach employs a step where there is an
explicit determination of the phase, whereas in the indirect approach the phase is never
calculated. The indirect approach directly translates information related to the phase into
signals that are used to compensate for tfic wavefront. The sensors are required to sample
phase at hundreds to thousands of Hertz and have sufficient spatial resolution for a given
application. Additionally, the sensors are required to have very high dynamic range,

allowing phase determination independent of intensity (Tyson, 1998).
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A popular direct sensing approach uses the Shack-Hartmann sensor (Tyson, 1998).
This approach uses an array of lenses, where each lens acts as an aperture and produces an
array of spots. With proper calibration, the position of each spot relates to the local
wavefront tilt at each lens. To detect the spot, general image processing techniques are
utilized. Figure 2.5 depicts the Shack-Hartmann wavefront sensing technique, showing
spot motion for a diverging wavefront as compared to a plane wavefront. The NIF
adaptive optics system utilizes the Shack-Hartmann sensor approach and a typical output

for a flat wavefront input is shown in Figure 2.6.

2.6 Controller Configuration

In general, the adaptive optics controller is a multi-input multi-output configuration.
The input portion of the controller utilizes information from the sensor sampling the
wavefront, a processor for any control law implementation, and lastly, associated drive

power amplifiers to drive-the-actuators.

Figure 2.7 depicts=a~functional block diagram of the NIF wavefront controller

configuration and is described as follows. Initially, a reference source is utilized to
generate a reference spot p;:;on file. Then, a probe beam is injected and the wavefront
system is calibrated by an on-line procedure. Each of the 39 actuators is individually and
sequentially displaced relative to the best flat condition. From this information, a gain
matrix relating actuator movement to Hartmann spot movement is developed. Following
calibration, the loop is closed and the Hartmann spot error is driven to zero based on the
control law. Prior to a shot sequence, an additional Hartmann offset file is utilized to
generate a different error vector. This additional offset file represents the uncorrected
aberrations measured on the previous shot. Using these offset files, the surface shape of
the deformable mirror is set to the conjugate of the expected aberrations at shot time.

The control system is designed to operate with a closed loop bandwidth of 1 Hertz.

This is achieved by sampling the probe beam at 30 Hertz with the wavefront sensor. The

14



sensor is output through standard RS-170 video which is read by a frame grabber. This
image is read by a SPARCengine AXI computer which calculates the centroids for all 77
lenslet spots and calculates the associated error vector. This information is then sent to the

controller which calculates the least squares actuator displacements (Zacharias, et al, 1998).

plane wavefront | f —

lens detector
array plane

diverging wavefront

Figure 2.5 Shack-Hartmann wavefront sensor technique
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Figure 2.6 Typical spot pattern from Shack-Hartmann sensor (77 lenslets)

‘

Mirror
response

Desired
spot
positions

Ref. spot
positions

Pump-induced
Hartman spot
offsets

Calibration

Cissesesacs

Beam wavefront

Figure 2.7 Controller configuration for NIF A/O system (Zacharias, et al, 1998)



2.7 Conclusion

In this chapter, the field of adaptive optics was described, which included detailed
descriptions of the deformable mirror, sensor and controller technology. For a specific
example, the National Ignition Facility adaptive optics system components and functionality
were described. Furthermore, a general overview covering adaptive optics development,
development participants and focus areas was presented. The deformable mirror details

focused on the continuous discrete type and sensor details focused on the Shack-Hartmann

type.

S SR
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CHAPTER 3 - STATIC SURFACE SHAPE MODELING

3.1 Introduction

The purpose of this chapter is to develop a computer model which will facilitate the
static surface shape control in the next chapter. The first part of this chapter will cover the
development of a finite element model, using the commercial software package I-DEAS
from Structural Dynamics Research Corporation. In the second part, experimental results
will be acquired through interferometry utilizing Lawrence Livermore National Laboratory
facilities. Lastly, experimental results will be compared to the finite element results and a

statement of model fidelity will be established.

3.2 Finite Element Modeling

The purpose of this work is to develop a computer model which will represent the
static surface response of a deformable mirror. An in-depth literature review covering
deformable mirror surface response modeling can be found in Tyson (1998), and an
additional related TrRSPATE review can be found in Meirovitch (1990). Authors have
considered both numw?ilgal models, such as finite elements (Furber, et al, 1994a), and
analytical models, such as Gaussian functions (Ealey, et al, 1991). The modeling errors
associated with usmg most analytical functlons are related to the boundary conditions along
the edge and the so cz;lléd pmmn; error effect (Hiddleston, et al, 1991). The pinning error
effect occurs when all the actuators are pushed identically, and the model shows a surface
that is made of bumps of equal height. This rippled surface is due to modeling errors and
does not occur in the real device. Some numerical approaches, such as the finite element
method, do not have these deficiencies since they maintain continuity in displacement,
slope, and higher derivativesbetween elements. After a complete evaluation of these
different approaches, the finite element method was selected due to its accuracy, flexibility,

and the availability of commercial software. The Structural Dynamics Research

Corporation (SDRC) I-DEAS Master Series 5 (Lawry, 1997) modeling package was
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utilized to generate the finite element model of the National Ignition Facility (NIF)
deformable mirror, which is shown in Figure 3.1.

A solid finite element model was developed of the NIF 39 actuator prototype
deformable mirror, which included one facesheet and thirty-nine 3-DOF springs. The
model was built using parabolic tetrahedron solid elements, each having 10 nodes with the
overall model having 68,323. This model is shown in Figure 3.2. To verify that the
meshing errors were sufficiently small, models with mesh sizes ranging from 26,000

nodes to 350,000 nodes were developed and solved using the same boundary conditions.

Figure 3.1 National Ignition Facility prototype deformable mirror
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This approach follows standard finite element mesh refinement techniques and will produce
an assessment of the meshing error (Lawry, 1997, Russell, 1996). The boundary
conditions were free edges, constrained springs, and a force applied at actuator number 20.
The selection of this boundary condition set is justified due to the symmetry in the system.
Using surface displacement as the performance metric, approximately ninety-nine percent
asymptotic convergence was achieved, as compared to the 350,000 node model, after
reaching approximately 68,000 nodes. This convergence indicates a mesh density that is
sufficient to capture the displacement spatial frequencies in the model. Therefore, it is
concluded that a ninety-nine percent convergence is sufficient, based on uncertainties
associated with other aspects of the modeling, e.g., material properties and boundary
conditions, memory capacity limitations, and computational time considerations.

Figure 3.3 is a schematic of the mirror with the 39 actuator locations noted. With
the model complete, surface shape responses (influence functions) were calculated for
twelve of the thirty-nine actuators at locations 20, 21, 24, 25, 27, 28, 31, 32, 34, 35, 38,
39. This data was converted to a 32 x 32 point grid evenly spaced over the 400 mm x 400
mm (15.75 in. x 15.75 in.) clear aperture (i.e., laser beam footprint) for further post
processing. Figure 3.3 depicts the clear aperture and Figure 3.4 depicts the 32 x 32 point
grid projected on the mirror surface. The remaining influence functions were calculated
through coordinate transformations. This is justified due to the symmetry in the system.
Figure 3.5 shows an example surface response (influence function) for the center actuator,
#20.

- With the model complete and the influence functions generated, the next step was to
gather experimental results. These experimental results are needed to verify the accuracy of
mathematical model so that it may be used for future control simulation. The magnitude of
acceptable model accuracy is established by the intended use. With the ultimate goal of
using this model for static surface shape control, model errors should be small compared to

errors generated by the control law, the magnitude of the aberration to be corrected, etc.
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Furthermore, model errors should be comparable to uncertainties in material parameters,
e.g., elastic modulus, Poisson’s ratio. Lastly, once the static model is verified, small

variations could be made to the model to complete sensitivity studies for design purposes.

Figure 3.2 Finite element model of deformable mirror
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Figure 3.5 Influence function for actuator #20
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3.3 Experimental Test

Experimental tests were completed on the NIF 39 actuator deformable mirror in
order to validate the model developed in the previous section. The tests utilized a 610 milli-
meter (24 inch) aperture Fizeau interferometer system at Lawrence Livermore National
Laboratory (LLNL), which was specially developed to characterize the performance of the
NIF adaptive optics system. The system optical components are attached to a large granite
table in an environmentally controlled enclosure. The interferometer system uses a
commercial 101.2 millimeter (4 inch) interferometer head from Phase Shift Technologies
for both system performance measurement and to supply the probe (YAG) beam for
wavefront controi. The interferometer layout, as well as a photograph of the actual system,
is shown in Figure 3.6. Next, using Figure 3.6, the path of the beam will be summarized.

The YAG beam from the commercial interferometer head returns a portion of its beam at the
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transmission flat before the beam passes through a splitter and is expanded by a high
quality Keppler telescope. The expanded beam reflects off the deformable mirror (or
reference flat) and returns through the telescope. On the return path, the splitter sends a
portion of the beam to the Shack-Hartmann sensor. The reference flat replaces the
deformable mirror for a reference measurement used to subtract out aberrations (bias
errors) in the interferometer path added by the splitter, fold mirrors, and telescope. This
approach requires the reference flat surface to be extremely high quality. The wavelength
of the probe beam is 1.053 micrometers and the detector is a CCD camera with a 512 x 488
pixel array, which results in a resolution of approximately 1.3 millimeters per pixel

(Zacharias, et al, 1998).

Deformable mirror interferometer layout

Hartmann
Sansor 4” Interferometer

T —

(insertable)

Deforrnable mirror
Reference flat
Collimating lens

Figure 3.6 Interferometer schematic layout and photograph (Zacharias, et al, 1998)

As with any experiment, understanding the uncertainties and errors are very
important. The large interferometer system was characterized through a series of tests,
which included accuracy, repeatability, and reproducibility (Koch, 1998). These
parameters are defined based on the International Organization for Standardization (ISO) as
follows (Patterson, 1994). Accuracy is defined as the closeness of the agreement between

the result of a measurement and a true value of the measurand. Repeatability is defined as
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the closeness of the agreement between the results of successive measurements of the same
measurand carried out under the same conditions of measurement. Reproducibility is
defined as the closeness of the agreement between the results of measurements of the same
measurand carried out under changed conditions of measurement. For these specific tests,
repeatability measurements were taken over a few minutes and reproducibility
measurements were taken over approximately one hour. The most important
characterization for verifying the mathematical model is repeatability, since two
measurements are taken and then subtracted to get the experimental influence function.
This is accomplished by taking a measurement of the deformable mirror at a nominal
voltage condition and then repeating the measurement after increasing the voltage on a
single actuator. The difference between these two measurements gives the actuator
influence function. Table 3.1 summarizes the overall characterization test results, which
shows a peak-to-valley accuracy of 0.2 micrometers (7.9 microinches), repeatability of
0.028 micrometers (1.1 microinches), and reproducibility of 0.057 micrometers (2.2
microinches). The results in Table 3.1 were generated using Phase Shifts’ root-mean-
square (RMS) and peak-to-valley (P-V) calculations that utilized a 512 x 488 CCD camera
pixel array. On the basis of these test results, it is apparent that a static bias error exists.
As discussed éarlier, this is due to the fabrication and mounting errors associated with the
optical components. Although the bias error is relatively large, since it is static it can be
subtracted from the measurement results. Therefore, as stated earlier, the repeatability error
is the most important characterization for verifying the mathematical model.

Utilizing the large interferometer system, the NIF 39 actuator deformable mirror
was tested by displacing each actuator sequentially, and recording the interferometric data
using the Phase Shift interferometer. This data was then converted to displacement data
using Phase Shifts’ post processing software. An example of this data, after being
interpolated to a 32 x 32 point grid from Phase Shifts’ CCD grid of points, is shown in
Figure 3.7 (Sacks, 1998).
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Test RMS Result " Peak-to-Valley Result
Accuracy 0.034 um (1.3 pin) 0.2 m (7.9 pin)

Repeatability 0.005 pm (0.20 pin) | 0.028 um (1.1 pin)
Reproducibility | 0.008 pm (0.32 pin) | 0.057 pm (2.2 pin)

Table 3.1 Summary of interferometer characterization
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200
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Figure 3.7 Experimental data for actuator #20

3.4 Model Verification

In this section, a comparison between results generated from the finite element

model and experiment will be made. This comparison will allow a statement of model
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fidelity to be made and also gives confidence in using the model for future control
implementation.

Two approaches in making the comparison between the model and experimental
data were made, one using a linear least squares fit (Kreyszig, 1988) approach between the
model and the experimental data sets and the second is based on a normalization approach
(Sacks, 1998a). Comparisons were made between influence functions 3, 4 and 20 since
these give representative locations over the surface. Figure 3.3 shows the actuator
numbering scheme.

The linear least squares equation can be formulated as

m n

=Yy (cz-q) (3.1)

j=1 i=1

m = # of actuators (equal to one for this application),
n=  # of grid points,

C, = coefficient for the jth influence function,

z/ = model surface displacement for the ith grid point and jth actuator, and

g; = experimental surface displacement for the ith grid point.

To find the minimum of the above equation, the partial derivative is taken with respect to

the coefficient Cj and then set to zero, which yields the following equation

0=232 (Czl-a,) (3.2)
i=1

which can be re-written and solved for the coefficient as



C, =t—. 3.3)

Using Equation (3.3), the fitting coefficient is calculated and then applied to the
model data. Then, the difference between the experimental and model results is calculated.
The normalization method can be formulated by normalizing both the model and

experimental data by each of its maximum values, respectively. These equations are

formulated as
0= and (3.4)
G ax
o zZ =" (3.5)
zmax
where,
= 1....... n,

= # of grid points,

Q. = normalized experimental surface displacement for the ith grid point,
q; = experimental surface displacement for the ith grid point,

d..x = maximum experimental surface displacement,

Z, = normalized model surface displacement for the ith grid point,

z; = model surface displacement for the ith grid point, and

Zmax = Maximum model surface displacement.
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Using Equations (3.4) and (3.5), the normalized model and experimental surface
displacement data are calculated and then subtracted.

The least squares method was compared to the normalization method results and it
was decided to use the normalization method for all comparisons due to the difficulty in
aligning the experimental data. Results for selected actuators can be seen in Table 3.2,
which shows actuator number and percent difference between model and experiment
relative to the maximum surface displacement. Figures 3.8, 3.9 and 3.10 depict
differences between model and experimental results for actuator #20. It should be noted
that better translation alignment between experimental and model data would most likely

reduce the percent difference. This translation alignment error is evident in Figure 3.8.

Actuator Maximum Max. Difference Percent

Number Displacement (um) | between Experiment | Difference

and Model Data (um) (%)

3 1.0 0.06 +/- 6
7! 1.0 0.03 +-3

20 1.0 0.05 +-5

Table 3.2 Percent difference between model and experimental data

On the basis of the results listed in Table 3.2, a statement of model accuracy or
fidelity can be established. The peak-to-valley repeatability errors associated with the
experiment, listed in Table 3.1, represent approximately 20 percent to 50 percent of the
difference between the model and experimental data listed in Table 3.2. Additionally, the
root-mean-square (RMS) repeatability errors, listed in Table 3.1, represent approximately 4
percent to 8 percent of the difference. However, since the model and experimental

difference errors appear to be systematic and spatially slowly varying, as seen in Figures
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3.9 and 3.10, reasonable and accurate conclusions can be made. Furthermore, as
discussed earlier, material property uncertainties can be on the order of 5 to 10 percent.
Other authors (Furber, et al, 1994b) have reported difference errors for similar models on
the order of 8 percent of maximum surface displacement using finite element models.

Therefore, the above data strongly supports the verification of the static model.
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Figure 3.8 Difference between model and experimental data for actuator #20
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3.6 Conclusion

In this chapter, a validated computer model was developed which will be utilized
for static surface shape control in the next chapter. The first part of this chapter covered the
development of a finite element model, using the commercial software package I-DEAS
from Structural Dynamics Research Corporation. The finite element method was selected
over other approaches, such as analytical methods, due to its accuracy, flexibility and the
availability of commercial software. In the second part, experimental results were acquired
through interferometry which described the surface deformation of the NIF deformable
mirror. The experimental setup and errors associated with the experimental results were
discussed in detail. Lastly, experimental results were compared to the finite element results
utilizing a normalization approach and a statement of model fidelity was established. Model
and experimental peak-to-valley result differences were a maximum of +/- 6 percent, which

is comparable to material property uncertainties.
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CHAPTER 4 - STATIC SURFACE SHAPE CONTROL

4.1 - Introduction

The purpose of this chapter is to investigate geometrical or static surface shape
control utilizing the finite element model developed and validated in Chapter 3. In addition
to developing a static control model, this chapter will demonstrate the value of using a
validated plant model versus using less accurate models. The National Ignition Facility
(NIF) adaptive optics configuration will be utilized for a specific example. The first section
will cover formulation of the plant model, which utilizes the output from the finite element
model. The second section covers development of a sensor model, which is a finite
difference matrix representation of a Shack-Hartmann sensor. The Shack-Hartmann
sensor, as described in Chapter 2, measures wavefront aberrations which are directly
proportional to the average tilt in the wavefront across the lenslet. The third section covers
development of the controller model, which utilizes a typical least squares control
algorithm. With the control model developed, simulations are completed to show the
general functionality of the control to correct for typical NIF wavefront aberrations. Lastly,
performance comparisons are made between the finite element static plant model and a

Gaussian plant model.

4.2 Control System Description
The general block diagram describing the geometrical control approach is shown in
Figure 4.1. The remaining portion of this chapter will develop and discuss the controller

matrix, plant matrix and sensor matrix represented by the notation in Figure 4.1, where,

r = reference input vector (n),

e = tracking error vector (n),

GC = controller matrix (mxn),
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i = input vector (m),

du = input disturbance vector (m),
G, = plant matrix (rxm),

dy = output disturbance (r),

y = plant output vector (1),

1 = sensor noise vector (r), and

GS = sensor matrix (nxr).

=+ e | (mxn) | & + (rxm) " 0
o=ty TESO= ) =0
- +

(nxr)
G

AN
|%+
= 3

Figure 4.1 General MIMO block diagram

4.3 - Plant Model

The plant matrix, Gp, is modeled as a static or geometric system and is represented

as a non-square matrix which maps actuator input space to surface displacement output
space. This matrix is also referred to as the full influence function matrix (Furber, et al,
1994a). The finite element model output, developed and validated in Chapter 3, is utilized
as the plant model. Figure 4.2 shows a schematic of the deformable mirror surface with

actuator positions and projected lenslets of the Shack-Hartmann sensor. In general, the
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plant model can be generated numerically, such as with the finite element method,
analytically, such as a Gaussian function, and/or experimentally using an interferometer or
other surface displacement measurement device. The input-output relationship for the plant

is defined as

5=6.i. @.1)

The plant matrix, Gp, can be decomposed into a product of two matrices (Furber, et al,

1994a), J, the plant compliance matrix and, K, the plant stiffness matrix, where,

t

Q2
il
bl

4.2)

The stiffness matrix, K , is defined as the mapping from actuator displacement to actuator
force and the compliance matrix, J, is defined as a mapping from actuator forces to surface
displacement. This is an important relationship, showing that for a given actuator spacing

and configuration (i.e., the J matrix), different stiffness matrices, K, can be formulated.

Therefore, two systems with the same J matrix are equivalent with a -simple
transformation of the stiffness matrix (i.e., different input vector). The next section will

cover the development of the sensor model.

4.4 - Sensor Model

The sensor matrix, Gx, is modeled as a static system and is represented as a non-
square matrix which maps displacements to average slopes. As discussed in Chapter 2,
there are many different types of wavefront sensors utilized for adaptive optic control. For

this analysis, the Shack-Hartmann design will be implemented, and the sensor matrix



developed by Salmon, et al (1993) will be utilized. As described in Chapter 2, the Shack-
Hartmann sensor uses an array of lenses (lenslet array), where each lens locally samples
the incident beam and acts as an aperture and produces an array of spots. These spots are
directly proportional to the intensity-weighted average tilt in the wavefront across the
lenslet. To detect and track the spots, general image processing techniques are utilized.
Figure 4.2 depicts the mapping of the lenslet array to the actuator positions. Next, the
Shack-Hartmann sensor matrix will be developed.

There are two distinct types of lenslets, type I and type II. A type I lenslet is one
that is centered on each subaperture of the deformable mirror, midway between three
actuators. A type II configuration covers the lenslets that are covered over each actuator.
These configurations are shown in Figure 4.3. Using Figure 4.3a, the finite difference

equations for a type I are defined as

Beam Footpri
Actuator

Locations

Lenslet
Aperture

Figure 4.2 Schematic of NIF deformable mirror with actuators and projected lenslets
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and 4.3)
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-

where h is the distance between actuators, r, and 7, are the x and y-direction slopes,

respectively, and the z;'s are displacements at corresponding actuator locations. Using

Figure 4.3b, the type II finite difference equations are defined as

_ 22+ZS_ZS_26

r and 4.5
r,= 2z, +22_236_h2Z4_Z5+26' (4.6)

Equations 4.5 and 4.6 assume a quadratic wavefront between the six actuators surrounding

the lenslet. Equations 4.3 through 4.6 are written in matrix form as

o
il
Iy

“.7

where 7, is a vector containing the r, and r, slopes and Z is a displacement vector. In

general, the displacement vector Z is a subset of the aberration displacement vector § and

is related by

l
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Combining Equations 4.7 and 4.8 results in

and therefore defines the sensor matrix as

38

4.9)

(4.10)

Equation (4.9) converts the measured displacements to x and y-direction average slopes.

Note that there are twice as many slopes as lenslets. It should be mentioned that variations

to this type of sensor can be implemented, such as weighting additional measured

displacement points.

z1 z6 @

@ z2
h¢®0@ 5 @

z3

(a)

(b)

Figure 4.3 Coordinates and base points used in finite difference equations
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4.5 - Control Algorithm

The controller matrix, GC, is implemented based on a least squares fit and has been

used by many authors (Salmon, et al, 1993, Furber, et al, 1994a, Tyson, 1998) for
geometrical or static surface shape control. The controller matrix input output relationship

is written as

t

u=Ge, (4.11)
where the controller matrix, GC, is the pseudo inverse of H and is given by

G, =(H™H) HT, (4.12)
and

H=GG,. T (413)

sTp

Due to H being non-square, the pseudo inverse is required. As discussed earlier, Gp is the
plant model and utilizes the finite element model developed and validated in Chapter 3, and

G, is the Shack-Hartmann sensor model.

4.6 - Control Simulation

A Matlab program was written which implements the equations developed in the
previous sections énd éan Be foﬁnd in Appendix C. The National Ignition Pacﬂlty
prototype deformable mirror plant model, developed and validated in Chapter 3, and
Shack-Hartmann sensor model were utilized in the simulation. This control model allows

different deformable mirror designs and sensor designs to be implemented for a given set



of wavefront aberrations. Although not presented here, an important aspect of this model
1s that it allows a comparison between using a perfect sensor, which shows the ability of
the deformable mirror to correct the aberration without any sensor filtering, and a sensor
which averages over subapertures.

To show the utility of the program some typical cases were considered. Figures
4.4 and 4.7 depicts typical 2nd order and 4th order aberrations expected on the National
Ignition Facility (NIF). The aberration amplitudes have been reduced to account for the
double bounce configuration on NIF. Figures 4.5 and 4.6 and Figures 4.8 and 4.9 show
the corrected aberrations for the 2nd order and 4th order, respectively. The 2nd order
aberration peak-to-valley was reduced from 4.2 micrometers to 0.25 micrometer, a
reduction of 94%. The 4th order aberration peak-to-valley was reduced from 1.05
micrometers to 0.15 micrometers, a reduction of 86%. As discussed in Chapter 3, the
model errors are approximately 0.05 micrometers peak-to-valley and represent
approximately 20 percent of the 2nd order and 30 percent of the 4th order corrected error.
This knowledge provides significant value when evaluating performance for design
purposes.

The strength and significance of this approach is that it utilizes a verified
mathematical model versus less accurate analytical functions as inferred by Salmon, et al
(1993) or an unverified model as used by Cielinski (1991). Using a verified model
presents the opportunity to complete sensitivity studies or design optimizations with
significant confidence without the need to build many expensive prototypes. Compared to
Furber, et al (1994a) who developed a correctability model of a large deformable mirror,
this approach integrates a Shack-Hartmann sensor model. Lastly, the overall control model
shows significant value in simulating static surface shape control problems with the ability

to test various deformable mirror, sensor and control algorithm designs.
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Figure 4.5 Residual after correction of 2nd order aberration (full scale)

41



Fitting Error - SIGMA =2.6955e-05
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4.7 Performance Comparison

In this final section, the control model developed was utilized to compare two types
of plant models. The errors associated with using traditional analytical functions, e.g.,
Gaussian functions, versus the validated finite element model developed in this work, was

studied. Tyson (1998) presents an analytical influence function representation as
Z(r) = exp(-B,r*), (4.14)

where Z(r) is the surface displacement and f, = 2.77. Furthermore, Tyson (1998) states
that this simplest Gaussian form represents a deformable mirror influence function quite
well, within approximately 5%. Equation (4.14) was converted to Cartesian coordinates
and programmed in Matlab to generate a plant model matrix. This matrix has dimensions
of 1024 x 39. A simple interpolation technique was used to convért éééh influence function
file to the 32 x 32 point grid used previously and depicted in Figu;é ‘34‘ |

Before generating all 39 influence functions files, influence function #20 was
generated from Equation (4.14) and compared to the experimental data collected in Chapter
3. Using the experimental data, the Cartesian coordinates were adjusted so that Equation
(4.14) “matched” the experimental data. These adjusted coordinate values were then used
for all 39 influence function files. Figures 4.10 and 4.11 depict influence function #20
generated by the Gaussian model, and the difference between the model and experiment,
respectively. Figures 4.12 and 4.13 depict line plots of the Gaussian and experimental data
for actuator #20. From these Figures, it is evident that the Gaussian function matches the
experimental data quite well for actuator #20 as Tyson (1998) suggest;.

With the Gaussian plant model developed, three disturbance cases were solved and
compared to the finite element model solution. The three cases included, a piston

aberration, a 2nd order aberration, and a 4th order aberration. The piston aberration is



probably the most important test case, since the answer is known, i.e., the resulting surface
should be perfectly flat.

The first comparison was made with the piston aberration correction. The Gaussian
plant model produces residual errors approximately 29 times greater than the finite element
model results. Figures 4.14 and 4.15 depict the errors associated with the Gaussian and
finite element model results, respectively. As expected, the Gaussian function produced
large errors near the edges, since these analytical functions do not maintain continuity in
displacement, slope, and higher derivatives between adjacent influence functions or at edge
boundary conditions. Authors (Tyson, 1998, Sacks, 1998b) have implemented techniques
or “tricks” to achieve better boundary condition matches using analytical functions.
Figures 4.17 and 4.19 depict the correction errors for the 2nd order and 4th order
aberrations, respectively, for the Gaussian function. These results compare to Figures 4.5
and 4.8 which utilized the finite element plant model. The Gaussian plant model 2nd order
residual error is approximately 6 times greater than the finite element results, and the 4th

order residual error is approximately 2 times greater. These results are summarized in

Table 4.1.
Aberration | Form pP-v “Gaussian | Finite Element Percent | Multiple
displacement | residual residﬁal (rms) | Difference | Factor
(Lm) (rms) (nm) (nm) (%)
[ Piston a 1 40.1 1.40 2800 29
2nd order | by* 4 150 26.9 457 5.6
4th order | cy” 1 65.1 27.2 140 2.4

Table 4.1 Comparison between Gaussian and finite element plant models
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Fitting Error - SIGMA =6.5115e-05
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Figure 4.20 Same as Fig. 4.19 with different scale

4.8 - Conclusion

In this chapter, static surface shape control was investigated and implemented using
the NIF prototype deformable mirror and sensor configuration. The plant matrix utilized
the finite element model developed and validated in Chapter 3. The sensor matrix was
based on a Shack-Hartmann configuration and the controller algorithm was based on a least
squares method. Equations were coded using Matlab and simulations were completed for
typical NIF aberrations. This control model shows significant value in simulating static
surface shape control problems with the ability to test various deformable mirror, sensor
and control algorithm designs. Lastly, the control model was utilized to compare the
residual errors of a typical Gaussian function model versus the validated finite element plant
model. As expected, since the Gaussian function does not maintain continuity in

displacement, slope and higher derivatives between adjacent influence functions and at edge
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boundary conditions, the residual errors from the Gaussian model exceeded the errors of
the finite element model. Depending on the aberration corrected, the Gaussian plant model

produced residual errors 2 to 29 times greater than the validated finite element plant model.
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CHAPTER 5 - DYNAMIC SURFACE SHAPE MODELING

5.1 Introduction
The purpose of this chapter is to develop a computer model which will facilitate the

development of dynamic surface shape control approaches. This model will be used in the

next chapter to develop proportional-integral (PI) and H_ control algorithms. The first part

of this chapter will cover the general model development approach and related research.
The second part will address model reduction techniques. The third section will cover
derivation of the dynamical equations of motion utilizing bond graph techniques, for both
SISO and MIMO models. Lastly, the final section will cover verification of the dynamic
equations of motion, utilizing experimental results from the NIF prototype deformable

mirror and published literature results.

5.2 Model Development

This phase of research has the ultimate goal of developing a dynamic model of a

uniform, homogenous, isotropic continuous plate with discrete linear actuators, such as the
one shown in Figure 5.1. Such a model can be considered to represent a deformable
mirror. The general partial differential equation for this system can be written as

(Meirovitch, 1967)

d'w  2d*w  I*w N’w.
o Ty ) Par )
5.1
ER®
D=
12(1—v2)

where
E = Young's Modulus,
h = plate thickness,

v=  Poisson's ratio,
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p = mass/unit area, and
f(x,y,t)=  actuator dynamics.
Plate ¥ / Actuator Location
@) O @) @)
O O O
O O O O
Plate

ﬁ / Actuator

Figure 5.1 Plate and actuator layout

This model has been used many timeé (Creedon and Liﬁdgren, 1~970; Walker and
Yaneskek, 1976b; Apollonov, et al, 1990; Blanton and Sadek, 1992) in modeling plate
systems. However, most authors use a simplified force input instead of the actual actuator
dynamics. The reason for this is that using known simple force inputs allows a set of
uncoupled differential equations to be developed, whereas using the actual actuator
dynamics leads to a set of equations which are no longer uncoupled and cannot be solved
independently. When adding the actuator dynamics, these models are referred to as
combined dynamical models since they are a combination of discrete and continuous

elements (Nicholson and Bergman, 1986). The approach of this work differs from



published modeling approaches (Marlow, 1994; Boyer, et al, 1991; Vincent, et al, 1990;
Freeman and Garcia, 1982) in that it incorporates dynamic actuator coupling and plate
compliances in a combined dynamical system model. The results of an intensive literature
reifiew have shown that this approach has not been previously applied to adaptive optics
systems.

The difficulty in developing mathematical models for this type of system is that
models typically become extremely large and unusable for controller development. The

next section will cover various model reduction techniques to address this shortcoming.

5.3 Model Reduction

Model reduction is a very important aspect to consider when developing models for
control purposes. A significant amount of research has been completed related to model
reduction techniques, especially in the large space structure field. Three in-depth literature
reviews covering model reduction can be found in Junkins (1990), Meirovitch (1990) and

Fortuna, et al (1992).

e AN Db s S

Using the state space representatioh, the followiﬁg relationships can be developed
which help describe the model reduction problem. The primary objective is to obtain a low
order model such that the output vector y, best approximates, in accordance with some
criteria, the output y for all the signal vectors u belonging to the class of admissible input

functions. First, the original model is described as a high order time invariant system as

x=Ax+ Bu
(5.2)
y=Cx
where,
xeR",yeR",ueR'". (5.3)
Next, a low-order model of the original is assumed to have the form
x,=Ax,+Bu
(5.4)

y, = Cx,
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where,

x,€R,y € R ,r<n. (5.5)

The purpose of model reduction is to reduce the number of states a model possesses
in order to be tractable for realistic controller design. In general, during this reduction
technique, dynamic characteristics of the model will be lost. Therefore, the primary goal of
model reduction will be to minimize the loss of useful information. An important question
asked by Safonov (1991) is "How accurate must a reduced model be in order to be reliably
used?". As discussed by Fortuna, et al (1992), there exists no universal model reduction
scheme which can be applied, and in general, a combination of approaches gives the best
results. The first type of classification can be given by referring to the domain where the
models are represented; i.e., either frequency or time. Another type of classification has
been provided by Skelton (1980), who suggests three categories of model reduction
procedures:

1. Methods based on polynomial approximations (usually suitable in the frequency
domain),

2. Component truncation procedures based on state-space transformations, and

3. Parametric optimization techniques.

The purpose of this next section is to review many of the most used model
reduction approaches, which will primarily focus on the state truncation techniques. It
should be pointed out that other reduction approaches exist, such as controller reduction.
However, these approaches will not be addressed here.

The Aggregation method, introduced by Aoki (1978), is based on the concept of
combining a defined set of state variables of the 6figifial system with chosen weighting
factors. The perfect aggregation problem consists of finding a matrix that relates the
original state space to the reduced order state space. This matrix is called the aggregation

matrix. The adequacy of the reduced state vector, and therefore the aggregation matrix,
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depends on the objective desired; open-loop or closed-loop performance, optimization of
certain indexes, etc. (Fortuna, et al, 1992). The Singular Perturbation-based Approach
proposed by Kokotovic, et al (1986) is applicable to systems that can be heuristically
decoupled a priori into two subsystems, one slow and one fast. As a first approximation,
the slow part of the system can be considered dominant for a description of the full
behavior, and therefore, the reduced order model (Fortuna, et al, 1992). The Error
Minimization Approach proposed by Wilson and Mishra (1979) defines a cost function
which one tries to minimize. The cost function contains a weighting positive-definite
symmetric matrix and a vector which is defined as the error between the outputs of the
original system and those of the reduced-order system (Fortuna, et al, 1992).

The Modal Cost Analysis Approach defines a cost for the open loop model. In
general, the cost of each state is uniquely defined, and through optimization, the states with
the highest cost are retained (Skelton, et al, 1982). A Multivariable Frequency-Weighted
Approach is proposed which focuses on "cross-over" or midrange frequencies. Due to the
fact that at low- and high-frequencies an ext&remely- accurate model is not required, model
reduction can focus on preserving the accurate midrange frequencies. This reduction
approach assumes the state-space model can be decomposed into two components. It is
desirable that one component dominates the important characteristics of the system to be
modeled, whereas the other is less significant (Bacon, et al, 1989).

The Internally Balancing Theory Approach was proposed by Gregory (1984). This
approach produces a balanced approximation to the large model by defining and retaining
the most controllable and observable states. Although practically very difficult to
implement, approximations have been developed for MIMO lightly damped structures.
Mode selection requires evaluation of the relative impoitance of each mode of the control
problem: 1) modal fidelity, 2) controllability, 3) observability, 4) disturbance environment,
and 5) performance objective (Gregory, 1984). Hankel based methods propose the

problem of model reduction is to find a transfer matrix, with a degree less than the original
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system, such that the Hankel norm of the error matrix will be minimized. The error matrix
is defined as the original system matrix minus the transfer matrix (Fortuna, et al., 1992).

As discussed above, the purpose of model reduction is to reduce the number of
states a model possesses in order to be tractable for realistic controller design.
Accordingly, the primary goal of model reduction will be to minimize the loss of useful
information. Although the Aggregation and Singular Perturbation approaches are appealing
for this system configuration, the reduction approach employed will utilize a priori
information about the system to minimize the number of states.

Figure 5.2 depicts a general modal density plot of an actuator/plate system which is
representative of a deformable mirror. If system input frequencies are known, by
examining the modal density plot of the system, selected states may be eliminated from the
model since they will not contribute significantly. This technique is based partially on
engineering judgment (Karnopp, et al, 1990) and will be referred to as the modal density
selection approach. Region I has no modes and is therefore a compliance or static based
system. Many adaptive optic systems are developed utilizing this type of model. Region II
is defined as including the compliance components and the first dynamic mode of the
system. Generally, this mode is derived from actuator interactions. Region III is defined
as the entire system model including compliance components, actuator dynamics and plate
modes. Utilizing this modal density selection approach, the equations of motion will be

developed in the next section.

58



I |
B Region | ! Region I I Region llI
g 6 I egionl | egion | egion
§ 5 | |
9 4 I | ° ®
2 3| I I °
2 [ I I
e | ® ®
Frequency

Figure 5.2 Modal density plot for actuator/plate system

5.4 Derivation of Dynamical Equations of Motion

Bond graphs are used to develop the dynamical equations of motion for a single
actuator system and a seven actuator plate system. Bond graphs were chosen for their
concise, pictorial representation of energy Storagc, dissipation and exchange mechanisms
picture in a manner analogous to circuit diagrams, freebody diagrams, block diagrams or
signal flow diagrams. However, bond graphs are more concise and facilitate selection of
state variables and derivation of first order differential equations which are easily converted
to state space form (Margolis, 1985). Next, the derivation of the equation of motion using

bond graph techniques will be outlined.

Nomenclature
The nomenclature listed below, describes the variables used in deriving the equations

of motion, and are expressed as

q; = Displacement variable,

e; = Effort variable,
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q; = f = Flow variable,

¢, = p = Momentum variable,
R, = Resistance value,

C; = Compliance value,

I, = Inertia value.

Following the techniques developed by Karnopp, et al (1990), the independent state

variables are identified directly from the bond graph as a generalized momentum variables,
pP's, on all inertia (/) elements and generalized displacement variables, ¢'s, associated

with the compliance (C) elements where

p=[edt (5.6)
-0

and e

q= j fdt 5.7

and e, f are the respective effort and flow variables associated with the respective bonds.
In Figure 5.4, these bonds are numbered 1, 2, 4 and 5. In Figure 5.8, these bonds are
numbered 3, 4, 5, 7, 10, 11, 12, 14, 17, 18, 19, 21, 24, 25, 26, 28, 31, 32, 33, 35, 38,
39, 40, 42, 45, 46, 47 and 49.

Using the techniques developed by Karnopp, et al (1990), the 4 state equations for
Figure 5.4 and 28 state equations for Figure 3.8 are derived directly from the bond graphs.
After formulation, the 4 and 28 state equations were reduced to 3 and 21, respectively.

This was justified since the equations were equal. These state equations, using the notation



in the Figures, are listed in general form in Appendix C. These equations are then written

in general state-space form with "r" sensors and "m" actuators as

%= A%+ Bii (5.8)

where,

% =time derivative of the state vector (n),

=gtate vector (n),

=1

)

=system matrix (nxn),

v}
Il

input matrix (nxm),

C

i =input vector (m), and

output matrix (rxn),
y =output vector (r).

Using the technique described above, two models have been developed which can
be used to study the dynamics of:-defesmable mirrors. The first model, shown in Figure
5.3, models a single actuator and plate stiffness. The actuator is modeled as a combination
of a C-field, mass and dashpot. The C-field models the electro-mechanical effect of the
actuator and utilizes an energy function which satisfies Maxwell's reciprocity (Karnopp,
1996). The development of this relationship is described in Appendix B. The actuator
mass is modeled as an effective actuator mass due to the fact that the entire actuator mass is
not moving at the same velocity. A similar approach to modeling the mass was completed
by Marlow (1994). The dashpot allows different types of resistances to be modeled. For
example, linear damping could be used or a more complex non-linear friction law which
would produce hysteresis is possible. -Lastly; the plate compliance and mass is simply
modeled as a compliance and a mass. The mass of the actuator and plate is lumped into a

single effective mass.



The model represented in Figure 5.3 is also shown in Bond Graph form in Figure
5.4. As seen in this figure, the C-field connects bond 4 (actuator force and velocity) and
bond 5 (actuator voltage and current). Bond 6 connects to the electrical resistance in the
driving circuit. The inertia element connected to bond 2 and the resistance element
connected to bond 3 are part of the actuator model and bond 2 represents a combined inertia
term for both the actuator and plate. The plate’s compliance is shown connected to bond 1.
The dynamic equations of motion were developed utilizing the bond graph of Figure 5.4
and can seen in Appendix C.

These linear equations were coded using Matlab to simulate the frequency response
shown in Figure 5.5 and the step response shown in Figure 5.6. The parameters used in
the model] were based on information on the National Ignition Facility prototype thirty-nine

actuator deformable mirror and these are listed in Appendix D.

Plate Compliance

Actuator/Plate
Actuator Mass

Compliance
P Actuator

Damping

K5
e_% % W Actuator Capacitance

Figure 5.3 Simplified actuator and plate model.
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The second model, shown in Figure 5.7, uses seven actuators and a linear elastic
plate. Note that the seven actuator pattern is a segment of the NIF thirty nine actuator
deformable mirror, except that the edge boundary conditions are free. The actuators are
identical to the one described earlier and a C-field is used to model the plate. The C-field is
developed through the use of superposition; therefore, we assume operation in the linear
range of strains and deflections.

The finite element and experimental results of Chapter 3 were utilized in developing
the C-field. In this model, the C-field matrix is represented in the "stiffness form", which
means the constitutive law gives force as a function of displacement. The interested reader
is referred to Karnopp, et al (1990) for details on developing this multi-port C-field. The
detailed inertia effects of the plate have been neglected, assuming that the mode shape
frequencies were significantly higher than the frequencies of interest. This assumption
relates to the model reduction approach, which assumes we are in region II of Figure 5.2.

A bond graph representation of this model is shown in Figure 5.8. As evident by
comparing Figures 5.4 and 5.8, the actuator components are the same for the single
actuator model and the seven actuator model. It should be mentioned that the seven
actuator model could easily be expanded to any number of actuators. With the state
equations developed from Figure 5.8 and then programmed in Matlab (see Appendix D),
open loop simulations wére compléted. Development of the state equations can be found in
Appendix C. Figures 5.9 and 5.10 show the singular value plot, which represents the
family of frequency plots for a MIMO system, and step response, respectively, for the
seven actuator plate system. The general characteristics of these plots change as system
parameters are adjusted; e.g., reducing the ratio of the plate stiffness to the actuator
stiffness causes the actuator coupling to be reduced. Although not shown here, the result
of this can be seen in the singular value plot as the singular values spread further apart.

The actuator coupling relates to the influence functions, which is the defining characteristic

of a deformable mirror.
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5.5 Experimental Verification

The purpose of this section is to utilize experimental data collected on the NIF thirty
nine actuator prototype deformable mirror to validate the single actuator and seven actuator
plate models. The dynamic behavior of the influence function, which is the deformed
shape when one actuator is displaced and all others are held constant, will be studied.
Experimentally, the dynamic behavior of the influence function has been studied by
Freeman and Garcia (1982) and Marlow (1994). Experiments for this thesis focused on
acquiring the frequency response of various actuators, such as actuator number twenty as
shown in Figure 3.3. This work was completed at Raytheon Optical Systems,
Incorporated and was part of their acceptance test procedures for building a prototype large
aperture deformable mirror for the National Ignition Facility (La Fiandra, et al, 1998). This
data was corrupted due to poor mounting procedures and is therefore only useful as a
qualitative measure. Future tests should be completed to generate data for a quantitative
comparison. - —

Figure 5.11 depicts a block diagram of the experimental setup. As seen in Figure
5.12 and 5.13, a Fotonics displacement sensor and data acquisition system were
configured to acquire ffequency response data. A low amplitude sinusoidal excitation
frequency was applied to the PMN actuators, and the Fotonics sensor recorded the
displacement as the frequency was swept from 1 hertz to 1 kilo-hertz and from 1 kilo-hertz
to 10 kilo-hertz. The frequency sweep of the Dynamic Signal Analyzer was set up to drive
the high voltage amplifier, and the PC was commanded to bias its output to approximately
54 volts. This output was applied to the actuators via the actuator selection box. The
feedback output of the high voltage amplifier was connected to channel 1 of the analyzer
and became the reference signal. The Fotonic sensor output was connected to channel 2 of
the Analyzer as the test signal. After the sensor was positioned at the actuator to be tested,
it was calibrated before any frequency sweep was begun. A representative plot can be seen

in Figure 5.14.
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Figure 5.11 Block diagram of experimental setup

These experimental results were qualitatively compared to the models developed
previously in this chapter and show very good agreement. When comparing Figures 5.9
and 5.14, the seven actuator plate model response and the experimental response,
respectively, the followiiig obsérvations are made. The general shape of the responses are
similar in that they are constant until approximately 2 kilo-hertz and then roll off at
approximately -40 dB per decade. Furthermore, these results compare qualitatively to
Marlow’s (1994) experimental and modeling frequency response results.  Although
Marlow’s (1994) model and parameter values are different, the general frequency response
shape, reasonance peak, and roll off characteristics show reasonable agreement with the

models developed in this chapter. Figure 5.15 depicts a frequency response plot from

Marlow (1994).



On the basis of the experimental results, model parameters were adjusted using a
trial and error approach to match the system experimentally measured response. These
model parameters can be found in Appendix D and E. The damping value was the primary
adjustment parameter and was also the largest modeling uncertainty. The effective stiffness
and mass parameters were also slightly adjusted to match the resonant frequency. The
same approach was utilized for the single actuator model. This experimental validation

gives confidence for future use of these models for control development purposes.

Figure 5.12 Experimental setup for frequency response test
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Figure 5.13 Detail of experimental setup.
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Figure 5.15 Frequency response plot from Marlow (1994)

5.6 Conclusion

In this chapter two computer models were developed which will facilitate the
development 0; pig'nanuc surface shape controllers. The first part of this chapter covered
the general model development approach and overviewed previous approaches. Next,
model reductlon techmques were rev1ewed and a modal density selection approach was
employed. The third section covered the derivation of dynamical equations of motion
utilizing bond graph techniques for a single actuator and multiple actuator system. These
equations were coded in Matlab, and frequency and step responses were completed.

Lastly, the dynamic equations of motion was qualitatively verified by showing reasonable

agreement with experimeéntal and published literature results.
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CHAPTER 6 - DYNAMIC SURFACE SHAPE CONTROL

6.1 Introduction

The purpose of this chapter is to develop a multi-input multi-output (MIMO)
controller for use in surface shape control which will improve closed loop positioning
accuracy in the presence of disturbances and uncertainties. Initially, general design
objectives are overviewed with emphasis placed on stability, performance and robustness.
Next, a SISO controller is developed based on a proportional-integral approach, which will

give general insight to the characteristics of the system. Then, MIMO controllers are

developed based on proportional-integral (PI) and H_, methods utilizing the dynamic model

from Chapter 5. Lastly, performance comparisons are made between MIMO controller

designs and robustness evaluated.

6.2 Control Approach and Related Research

Surface shape control may involve tens to hundreds of degrees of freedom systems
and require high precision and accuracy. This poses a difficulty for control system
engineers in that developing accurate high order models and then MIMO controllers can be
almost impossible. Most development to date by-passes any significant modeling and
analysis prior to fine tuning controllers once the system has been built. This work will
focus on developing a MIMO modern controller to improve closed loop performance and

robustness. Performance and robustness comparisons are made between MIMO designs

using proportional-integral (PI) and H_ methods.

Research related to the development of control approaches vary significantly. There
are a significant number of control approaches for SISO systems, examples include but are
not limited to, P.I.D, optimal control, sliding mode control and adaptive control (Astrom,
1983; Banyasz and Keviczky, 1993; Ellerbroek, 1994; Luo and Delasen, 1993; Peter and

Iserman, 1993; Rad and Low, 1995; Ratten, 1989). Balas and Doyle (1990), Bushnell
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(1979), Hyde and Seering (1991), Fanson, et al (1990), Lyakhov, et al (1994), Schaechter
(1981), and Shishakov and Shmal'gauzen (1992) have investigated various control

problems related to flexible structures or plates. Fewer approaches have been developed
and utilized for MIMO systems. Examples include, but are not limited to, H_, synthesis, Q-

factorization and Youla synthesis (Mayne, 1996; Safonov, et al, 1989; Doyle, et al, 1989;
Sueur and Dauphintanguy, 1991; Brewer, 1995). Although the control approaches vary
significantly, in general, they attempt to accomplish the same goals (e.g., stability,

robustness, disturbance rejection, tracking).

6.3 Control Model
As mentioned, the main focus in this final phase of the research is to develop a
controller which has robust characteristics for dynamic surface shape control. The general

block diagram describing this control system is shown in Figure 6.1, where,

¥ = reference input vector (1),

ar

= tracking error vector (r),

GC = controller matrix (mxr),

u = input vector (m),

dii = input disturbance vector (m),
Gp = plant matrix (rxm),

dy = output disturbance (r),

y = plant output vector (r),

11 = sensor noise vec—tbr (r), and

G, = sensor matrix (rxr).

74



The main focus of this chapter is on the development of éc, the controller matrix,

using a traditional proportional-integral (PI) technique and the more modern approach of

H.. The plant matrix, Gp, will use the state space model developed in Chapter 5. Lastly,

the sensor matrix G, is assumed to be unity (identity matrix for MIMO case) for this

analysis and represents a strain gauge, although it could easily be modified to incorporate

sensor dynamics or a Shack-Hartmann sensor as implemented in the static control method

of Chapter 4.

(m)
du

() () (m)

P e Jma | Kra

- +

(rxr) |,
G S

Figure 6.1 General MIMO feedback loop

6.4 Design Objectives

The purpose of this section is to overview the general controller design objectives.
However, before presenting these objectives, some general transfer function relationships
are presented. Using Figure 6.1, transfer functions can be derived (Brewer, 1995) and are

defined as
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L =G,G, (6.1)
-1
T,=(I+L) L, (6.2)
S, =(1+L)", (6.3)
L =GG, (6.4)
T,=(I+L,) L, and (6.5)
S, =(I+L)" (6.6)

where L, and L, are defined as the return ratio at the plant output node and plant input

node, respectively. The 7’s and S’s are defined as the complimentary sensitivity function
and sensitivity function, respectively, with the subscripts defining the node location.
Equations 6.1 through 6.6 are used to define general performance design objectives.

The general design objectives are split into four areas: 1) Stability, 2) Performance,
3) Conflicts, and 4) Robustness (Mayne, 1996). Next, the four areas are reviewed:

1) Stability is the first and overriding objective. In general there are two distinct
concepts of stability. The first is intrinsic stability, based on the systems differential
equations, which examines the poles of the system matrix. The second is referred to as
input-output stability and is based on input-output behavior. The second approach defines
stability in terms of the poles of transfer function matrices (Mayne, 1996).

2) Performance is split into four additional areas: a) Tracking, b) ‘Good’ noise and
disturbance rejection, c) Disturbances/noise effects on the error signals, and d)
Disturbances/noise effects on actuators. Tracking is defined by Eqn. 6.2 and is the transfer
function ¥ - y. Good tracking requires Eqn. 6.2 to be approximately unity in the
frequency domain of interest, which is generally at low frequencies. Noise rejection is

defined by Eqn. 6.2 and is the transfer function 7 —> j. Good noise rejection requires

Eqn. 6.2 to be small in the frequency of interest, which is generally at high frequencies.
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Disturbance rejection is defined by Eqn. 6.3 and is the transfer function dy — y. Good
disturbance rejection requires Eqn. 6.3 to be small in the frequency range of interest, which
is generally low frequencies. Disturbances/noise effects on the error signals are not usually
of direct interest. However, it is a useful intermediary for assessing the effects of noise
and disturbances on the plant input. Eqn. 6.3 is the transfer function between 7 — €, and
is a command following measure. Disturbances/noise effects on the actuators are of
significant interest. Eqn. 6.6 is the transfer function between dit — & and should be small

in the frequency range of interest. The transfer function between 7 — & is defined as

t

(6.7)

1N
]

A
~

and should be small enough not to saturate the actuators. Lastly, the transfer function

between 1 — u is defined as

u=-SGn (6.8)

and should be small over the frequency range of interest.
3) Contflicts exist for both stability and performance objectives. Many of the

performance objectives conflict with each other and these conflicts are expressed by

Sy + Ty =17 (6.9)
and/or

S, +T =1. (6.10)

Several of the objectives require the sensitivity function, S, to be small and the

complimentary sensitivity function, 7, to be unity, and in view of Eqn.’s 6.9 and 6.10, are



consistent. However, some objectives require both T and § to be small, which is
impossible to have at a given frequency. Fortunately, many objectives are achieved by
meeting the condition over specified frequencies. For example, tracking usually requires S
to be small at low frequencies, and sensor noise rejection usually requires 7 small at high
frequencies. Lastly, stability also conflicts with performance objectives. For example, a
high gain controller often causes instability.

4) Robustness is defined as the ability to maintain the properties of stability and
performance as the plant ranges over a set of plants, relative to the nominal plant. The
model of the plant, on which the design is based and inevitably has errors, does not behave
identically to the “real” plant being controlled. It is essential that the design objectives,
stability and performance, are robust. Therefore, it can be stated that a controller provides
robust stability and performance, if it stabilizes and ensures a given minimum performance

for every plant within the set (Mayne, 1996).

6.5 SISO Control Simulation

Due to the complexity of developing controllers for large complex systems, a
simple representative single-input single-output (SISO) system will be studied to determine
general characteristics of the system. The system dynamic equations were developed in
Chapter 5 and the state space equations can be found in Appendix D. The primary value in
studying this simplified SISO system is to examine the ability to develop a SISO controller
and then infer the controller characteristics in a multi-input multi-output (MIMO) design.

As with all control development, both time domain and frequency domain
responses will be used to evaluate the performance of the developed controller, as the time
domain response gives good transient measures and the frequency response gives good
performance measures. A common way to specify desired closed-loop performance is by a
step response test. For this single actuator system, the specification is that a step reference

input 7 should produce a plant output  satisfying
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settling time = T seconds
and

overshoot <= A percent.

This will be accomplished by shaping the complimentary sensitivity T(s), the transfer
function from 7 to ¥, so that it approximates a standard second order system.

Accordingly, the ideal T(s) is represented as

2
w

T(s) = 2 . 6.11
®) s*+ 28w, s +w? (@11

A settling time of T seconds requires

S (6.12)

and an overshoot of A requires

_é‘n-
= A 6.13
exp( = C"’J (6.13)
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Figure 6.2 Step response (y/r) of ideal system to be matched

e

Next, the settling time and overshoot was set to 1=0.015 seconds and A=10%,

respectively, and substituted into Equations 6.12 and 6.13. These values were selected
based on the open loop response characteristics, such as the rise time and bandwidth, and
the desire to keep the overshoot reasonably small. Solving Equations 6.12 and 6.13 gives
{ =0.5912 and w, =451.05. These numbers will be rounded to { = 0.6 and w, = 450.

Therefore, the ideal T(s) is

202
T(s) = 02200 (6.14)
7 5 + 5405 + 202500

and is shown in the time domain in Figure 6.2 and in the frequency domain in Figure 6.5.

Furthermore, the ideal sensitivity function is written as

80



81

52 +540s

S =1-T(s) =
®) ®) 52 +540s + 202500

(6.15)

and is shown in the time domain in Figure 6.3 and in the frequency domain in Figure 6.6.

Now, using the ideal second order system responses, a matching technique (Brewer, 1991)
will be used to determine the gains in a proportional-integral (PI) controller. Often, the
open loop transfer function, L(s), is used to help facilitate the matching process. This

transfer function is shown in Figure 6.4.

step response
1 T T

0.6

0.4+

displacement

0.2+
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0.01
time ?sec.)

Figure 6.3 Step response (y/d) of system to be matched

Using a standard proportional plus integral (PI) controller model, the controller

gains K and K; were adjusted to achieve a response similar to the matching system



response. After many iterations, the gains were selected as K,=0.01 and K;=200 , which
gave a response which followed the matching system reasonably close. The step response
of the closed loop, open loop and matching system is shown in Figure 6.7. The closed
loop system reduced the overshoot from approximately 75% to zero and the settling time
was maintained per the specification. Due to the light damping in the open loop system, it
was difficult to significantly improve the settling time beyond the specification, without
introducing significant oscillations in the response. It should also be noted that the rise
time was increased over the open loop system, which is expected and is the trade-off for
reducing the overshoot.

Comparing the responses in the frequency domain shows similarities, as would be
expected from the time domain responses. Comparing Figures 6.5, the matching system
complimentary sensitivity plot, and Figure 6.8, the designed complimentary sensitivity
plot, shows a difference in tracking response which corresponds to the rise time difference.
Also, notice the sharp peak in Figure 6.8 at approximately 2 kilo-hertz. This represents the
difficulty in trying to match perfectly to a second order system.

Comparing Figure 6.6, the sensitivity transfer function for the matching system,
and Figure 6.9, iﬁé_éensitiviw transfer function for the designed system, shows both
systems have reasonably good disturbance rejection at low frequencies, and they slightly
amplify the disturbance in a small frequency band.

Lastly, Figures 6.4 and 6.10, show the system open loop transfer function "L" for
the matching system and designed system, respectively. In general, the shape looks good,
as the gain is "high" at low frequencies and "low" at high frequencies. The designed
system, Figure 6.10, also shows small attenuation around the 2 kilo-hertz range, which

would indicate the need for a higher order controller to achieve better attenuation.
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Figure 6.7 Step response for open loop, closed loop and matching system



Frequency (rad/sec)

©
o

4
o
o

Phase deg

0
N
o

R

U S I N | 1 ) T N S I N |

10!

3

102
Frequency (rad/sec)

Figure 6.8 Bode plot of complimentary sensitivity (T) of closed loop system

2¢C

TTTTYTT T T T T T 11717 T T LR L

HE R |

H . . i I i i H HE i H i -
10?2 10° 104
Frequency (rad/sec)

Phase deg
o 8 3

W
o
T

T B A | 1 1 § I I I I N O | 1 T DS W W N N 2 |

—h
O.A.

10° 10° 10*
Frequency (rad/sec)

Figure 6.9 Bode plot of sensitivity (S) of closed loop system

85



86

10° 10*
Frequency (rad/sec)

Phase deg
®
o

N

N

o
1

S T I IR W R T B AR R W)
102 10° 104
Frequency (rad/sec)

—
A

Figure 6.10 Bode plot of return ratio (L) of closed loop system

6.6 MIMO Proportional-Integral (PI) Control Simulation

The purpose of this section is to develop a MIMO controller based on a traditional
proportional-integral approach. The controller was developed utilizing the dynamic model
from the previous chapter. All simulations utilized the Matlab programming language.
First, the control development focused on deriving the proportional-integral MIMO

controller in state space form. The general PI controller can be written as

G =K +% (6.16)
§

and in state space form the matrices are written as

K.=C'B (6.17)



and

K =D (6.18)

where,
A =0 (nxn),

B =1 (nxr),
C" =k, (mxn), and

D= ka, (mxr).

These equations are derived by manipulating the state space equations (Brewer, 1995).

First, set

A=0 (6.19)

and then substitute into the state space equations giving

X =Bu, (6.20)
X =sx and (6.21)
y=C'%+Du. (6.22)
Now, combining Equations 6.20 through 6.22, results in
(oY )
y=|CB —-|+Dlu (6.23)
s

and



G = cTB(l) +D. (6.24)
s

By comparing Equations 6.24 and 6.16 it is proven that Equations 6.17 and 6.18 are the
proportional-integral MIMO controller matrices.

With the controller state space equations developed and utilizing the dynamic model
developed in Chapter 5, the equations were coded using the Matlab programming language

and are shown in Appendix E. With the control model complete, k, and k; were adjusted

to achieve the fastest response without significantly sacrificing overshoot and stability.
Stability was confirmed by evaluating the open loop and closed loop system eigenvalues.

After iterating through various gains, the following values were chosen, k, =0.5 and

k; =4500. Figures 6.11 and 6.12 are open loop frequency and step responses,

respectively, and are repeated from Chapter 5 for comparison purposes.

Figure 6.13 shows the frequency response of the return ratio, which has the typical
PI controller -20 dB/decade slope. In general, this is a reasonable return ratio since it has
"high" gain at low frequencies for rejecting disturbances and "low" gain at high frequencies
for attenuating noise. These results support the frequency response plots of sensitivity (S)
and complimentary sensitivity (T) shown in Figures 6.14 and 6.15, respectively. Lastly, a
closed loop step response is shown in Figure 6.16. It is noted that the results are very
similar to the results for the closed loop SISO controller, as shown in Figure 6.7.

Next, the robustness of the PI controller design was evaluated. As stated earlier,
robustness is defined as the ability to maintain the properties of stability and performance as
the plant parameters vary, relative to the nominal design.

To evaluate the controllers rcbustness, the plant parameters were varied and the
system stability and performance was evaluated. Defining the plant model developed in
Chapter 5 as nominal, the PI controller was developed. Using this controller, the plant

model parameters were modified and simulations completed. The plant model changes
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included reducing the damping by a factor of 2 and increasing the mass by a factor of 2.
The open loop response are depicted in Figure 6.17 and 6.18. Figures 6.19 through 6.21
depict the frequency response plots for the return ratio (L), complimentary sensitivity (T),
and sensitivity (S), respectively, for the PI controller. In general the results are slightly
degraded as compared to the nominal plant performance. Figure 6.22 depicts the step
response for the PI controller, which is unstable. These results indicate the lack of

robustness for this typical PI controller design. To overcome this shortfall, the next section

will cover the development of a controller utilizing the H_ controller design process.
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Figure 6.11 Open loop frequency plot
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Figure 6.14 Frequency plot of complimentary sensitivity (T,) using PI control
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Figure 6.15 Frequency plot of sensitivity (S,) using PI control
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Figure 6.18 Open loop step response of modified plant model
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6.7 MIMO H_ Control Simulation

In this section the H_ controller design process will be described. The goal in

robust multivariable control system design is to synthesize a controller which maintains
system response and error signals within tolerances despite the effects of uncertainty on the

system.  Uncertainty, can take many forms, however, the most significant are
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noise/disturbances and modeling errors. Therefore, uncertainty is by far the most

significant issue in controller design. H_ theory provides a direct reliable procedure for

synthesizing a controller which optimally satisfies singular value specifications. However,
before reviewing the design theory, some general controller properties are stated (Safonov,

et al, 1989; Safonov, et al, 1992):

1. The H,, optimal control cost function T, is all pass, i.e., O[T, ]=1 for all

W ER,

2. An H_, "sub-optimal" controller has order equal to that of the augmented plant (n-
state). An H_ optimal controller can be computed having at most (n-1) states,

3. In any weighted mixed sensitivity problem formulation, the H_ controller always

cancels the stable poles of the plant with its transmission zeros, and

4. In the weighted mixed sensitivity problem formulation, any unstable pole of the

s

plant inside the specified control bandwidth will be shifted approximately t6its @~

axis mirror image once the feedback loop is closed with an H_ controller.

The H_, augmented plant is shown in Figure 6.23 with G, described by

x=Ax+Bw+ Byu, (6.25)
z=Cx+ D,w+ D,,u, and (6.26)

y=Cx+Dyw+ Dyu. (6.27)
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Figure 6.23 Augmented plant and controller for H_ design

The variable w represents process and sensor noise, Z is the regulated variable and y is
the input to the controller. Figure 6.23 is also referred to as a linear fractional

transformation (LFT) on K, and G, is called the coefficient matrix for the LFT (Doyle, et

al, 1989‘). The H,, design process will minimize |T,,| by the appropriate choice of

controller K, where

A
T, =| W,KS| . (6.28)
W,T

The weighting functions W, W, and W, are chosen to reflect the design objectives. The

original plant G, is augmented with W,,W, and W, to give G,. The weighting functions

are not completely arbitrary, as they are subject to some constraints. The H_ theory gives

four conditivnis {constraints) for the existence of a solution to the standard H_ control

problem and are stated as follows:

1. D,, small enough. There must exist a constant feedback control law F(s)=

“constant matrix" such that the closed loop D matrix satisfies (D) <1,
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2. Control Riccati P > 0. The H_, full-state feedback control Riccati equation must
have real, positive semidefinite solution P,

3. Observer Riccati S 2 0. The Riccati equation associated with the observer dual
of the H_ full-state feedback control problem must have real, positive semidefinite
solution S, and

4. A (PS) < 1. The greatest eigenvalue of the product of the two Riccati equation

solutions must be less than one.

These four conditions must hold for there to exist a feedback control law which solves the

standard H_ control problem (Safonov, et al, 1992).

Utilizing the Matlab Robust Control Toolbox, the above H_ design methodology

was applied to the same system as that used in the PI controller design. After many
iterations and meeting the design constraints, the weighting functions W,,W, and W, were

chosen as

10000s+1 -
0 S+10000 o 5 o o 0
100005 + 1
0 0 . 000 0
W=l o o o0o.00 0 | (6.29)

0 0 00 . 0 0
0 0 000 0
0 0 00 0 o S1+10000

L | o " 10000s+1

W,=[ ], and (6.30)
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i . _
5 0000 0
100000000000 3
al 0 0
100000000000
0 0 . 0 0 0
W= 0 0 0 .00 0 (6.31)
0 0 00 . 0 0
0 0 000 0
0 0 0000 S
i 100000000000 |

Next, the H_ controller performance will be discussed. Figure 6.24, the open loop

return ratio singular value plot, has characteristics of a good design. The low frequency
gain is "high" which will help reject disturbances and the high frequency gain is "low"
which will help attenuate noise influences. Figures 6.25 and 6.26 are the closed loop
coniplimentary sensitivity (T) and sensitivity (S) singular value plots, respectively. Both
plg)ts show good characteristics, as is expected from the return ratio plot. Figure 6.26, the
sensitivity plot, does show some negative characteristics in the 200-900 Hz range where
the disturbance is amplified a maximum of 5 dB. Figure 6.27 shows the closed loop step
response for an input applied to the center actuator. The strong decoupling between the

output channels for an input to the center actuator is noted.
As completed for the PI design, the robustness of the H_ controller design was

evaluated using the same modified model. Figures 6.28 through 6.30 depict the frequency
response plots for the return ratio (L), complimentary sensitivity (T), and sensitivity (S),
respectively. These results are slightly different relative to the nominal plant performance.
Figure 6.31 depicts the step response, which shows more coupling than the nominal

design, but is clearly stable.
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Comparing the results from both the proportional-integral (PI) design and H_
design shows a clear improvement for the H_ design. Table 6.1 shows a comparison for

various performance parameters. From the time domain perspective, the H_ design

produced a faster rise time and settling time, with only a slight overshoot penalty.

Additionally, the effort required by the actuators for both the PI and H,, designs is very

similar, even though the H,, design produces better results. Comparing the frequency
domain characteristics, the performance, such as disturbance rejection and noise
attenuation, is better for the H_ design. The H_ design has approximately 9 dB more
disturbance rejection and 11 dB more noise attenuation as compared to the PI design.
Lastly, for the selected model parameter space, the H_ controller proved stable and

achieved nominal performance objectives. The PI controller showed reasonable

nerformance characteristics, but was unstable to a step input. Therefore, it can be stated

that the H,, controller provides robust stability and performance as compared to a standard

proportional-integral controller design.
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Singular Values (dB)

Parameter PI Controller H-inf. Controller
"Time Domain
rise time 0.035 sec. 0.0075 sec.
settling time 0.035 sec. 0.015 sec.
percent overshoot 0.0 % 10.0 %
Frequency Domain
T @ 1000 Hz. -9dB -20dB
S @ 10 Hz. -18 dB -27dB

Table 6.1 Performance comparison of PI and H_ controller designs
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Figure 6.24 Return ratio (L,) frequency plot for H_ design
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Figure 6.25 Frequency plot of complimentary sensitivity (T,) for H_ design
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Figure 6.26 Frequency plot of sensitivity (S,) for H_ design
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step response for H-inf. controller
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Figure 6.27 Step response applied to the center actuator
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Figure 6.30 Frequency plot of sensitivity (S,) using H_, controller
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step response for H-inf. controller
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Figure 6.31 Step response using H_ controller

6.8 Conclusion
In this chapter, a multi-input multi-output (MIMO) H_ controller for dynamic

surface shape control was developed to improve closed loop performance in the presence of

disturbances and uncertainties. Initially, general design objectives were overviewed with

emphasis placed on stability, performance, and robustness. Next, a SISO controller was |

developed based on a proportional-integral approach, which gave some general insight to

the characteristics of the dynamic system. Then, MIMO controllers were developed based

on a traditional proportional-integral (PI) method and the more modern H_ method. Both

107



108

MIMO controllers were developed utilizing the dynamic model developed in Chapter 5.

Lastly, comparisons were made between the proportional-integral (PI) and H_ controller

designs, which clearly showed the H_ controller having superior performance and

robustness characteristics.



CHAPTER 7 - CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The purpose of this thesis was the development of static and dynamic models for
control purposes and the development of a multi-input multi-output (MIMO) controller for
precision surface shape control applications. Building prototypes to complete design
optimizations or controller development can be costly or impractical. This shortfall, puts
significant value in developing accurate modeling and control simulation approaches. Such
development has the potential for use in a wide variety of applications, such as adaptive
optics, aircraft flutter control and noise control for marine vessels. The development
involved a detailed literature search of each area, development and validation of a static
model, MIMO control application of the static model, development and validation of a
MIMO dynamic model, and lastly the development of a MIMO controller using a modern
control approach.

To begin the development, in Chapter 1, a general description of t,hfu Rrpblem was
presented, outlining the need for a more focused approach on modeling and control
simulation in the field of adaptive optics. Additionally, a literature search was performed to
investigate existing techniques and applications applied in various fields, which showed
that these modeling approaches had not been previously applied to adaptive optics.

Next, in Chapter 2, a general overview of adaptive optics systems was presented.
This included areas such as the deformable mirror, controller and sensor configuration. A
specific example was presented, which utilized the National Ignition Facilities (NIF)
adaptive optic system. The deformable mirror configurations covered both continuous and
segmented mirror approaches which utilized piezo-electric actuators. Both direct and

indirect sensing approaches were discussed, with the Shack-Hartmann sensor discussed in

detail.
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With the general overview of adaptive optics complete, in Chapter 3, the static
model was developed. The model was developed using the Finite Element Method through
the commercially available I-DEAS software. With the modeling complete, experimental
data was collected on the NIF prototype deformable mirror utilizing a large aperture
interferometer system at Lawrence Livermore National Laboratory. Lastly, experimental
results were compared to finite element results using a normalization approach and a
statement of model fidelity was established. Model and experimental peak-to-valley
differences were a maximum of +/- 6 percent, which is comparable to material property
uncertainties.

Utilizing the validated static model, in Chapter 4, a static control approach was
implemented using existing control approaches. The control model was developed based
on a linear least squares approach and the sensor was based on the Shack-Hartmann
wavefront sensor. Using this control model, typical aberrations were corrected to show the
general performance. Furthermore, this control model shows significant value in
simulating static surface shape control problems with the ability to test various deformable
mirror, sensor, and control algorithm designs. Lastly, the control model was utilized to
compare the residual errors of a typical Gaussian plant model versus the validated finite
element model. As expected, the Gaussian model produced errors 2 to 29 times greater
than the finite element model for various aberrations. -

In Chapter 5, new dynamic models were developed of the NIF prototype
deformable mirror in order to facilitate the design of SISO and MIMO control approaches.
Based on an extensive literature review, a modal density model reduction approach was
employed. This approach uses a priori information to reduce model state size in the model
development stage. The dynamic equations of motion were developed utilizing bond
graphs.  With the equations formulated, they were then coded using the Matlab
programming language. Both time domain and frequency domain open loop responses

were simulated. Next, experimental frequency response data was collected on the NIF
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prototype deformable mirror. Lastly, this experimental data, and existing literature data
was used to validate the dynamic model.

Chapter 6 focused on the development of SISO and MIMO controllers for surface
shape control. First, a SISO proportional-integral controller was developed to determine
general characteristics of the dynamic system. Then, a new MIMO controller was

developed utilizing a proportional-integral controller to establish a system performance

baseline. Next, a new MIMO controller was developed based on the H_ method.
Simulations were completed for both controllers and the H_ design showed superior

characteristics as expected, in terms of robustness and disturbance rejection. The H_

design improved rise time by approximately a factor of two over the PI design and had

better decoupling characteristics, which relates directly to improved surface shape control

performance. Lastly, when evaluating robustness characteristics, the H_ design maintained

stability when the PI design became unstable. N

Lastly, a few comments will be made concerning how these modeling and
controller developments can be used to design the next generation of deformable mirror
and/or surface shape control system. Utilizing the finite element modeling approach, a
static model can be developed and the output used as the plant model for the control model.
Depending on the system, the control model may utilize a sensor or use the surface
displacement points for the least squares fitting algorithm. With some knowledge of the
expected disturbances, the control model can be used to evaluate various plant models (i.e.,
using the finite element model), sensor configurations, and control algorithms. With a
baseline static model established, a dynamic model can be developed using the modeling
approach presented in this thesis, so that controller characteristics can be studied. First,

start with the SISO model to provide general insight, then expand to the more complex

MIMO model. With no experimental data, model parameters need to be estimated. With
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the dynamic model complete, various control algorithms can be evaluated for stability,
performance, and robustness. Utilizing these accurate modeling and control simulation
approaches will add significant value during the design stage in the absence of building

costly prototypes to complete design optimizations or controller development.

7.2 Recommendations

As a final section of this thesis, recommendations conceming future work on
surface shape modeling and control will be made. Although this thesis focused on model
development and control, many tangent issues arose.

Concerning the static surface shape control approach, additional research could be
completed which investigates the model’s parameter space of a given design to reduce the
root-mean-square fitting error for a given aberration. This parameter space should include,
actuator density, actuator spacing, actuator pad size and actuator configurations. Although
research has been completed in this field, a more complete study would be invaluable.

Concerning the dynamic surface shape model, additional areas-could benefit from
additional research. The first is to model the non-linear characteristics of piezo-electric
actuators. Although the non-linearities are small, their uncertainty may cause problems if
neglected. Secondly, it is recommended to add the higher frequency characteristics of the
system, such as plate modes, and study the observability and controllability of these
modes. The challenge will be to implement these additional modes and keep the system
size reasonably low. Lastly, additional dynamic tests for quantitative model validation
would be valuable.

Another area which would be interesting to research, is to combine the finite
element results with the state space model. This would allow a full surface dynamic

description of the mirror and still allow for control system development based on state

space methods.
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Lastly, the controller related research can be expanded. Controller reduction

techniques will need to be implemented and/or developed for the H_ controller performance

benefits to be realized for large scale systems. However, as hardware and software

capabilities improve, this shortfall will be minimized. Secondly, research focusing on

actuator saturation issues utilizing the H_ methodology could be studied. Lastly,

development of control expansion techniques, such as expanding the seven actuator

controller to a n-actuator controller without developing a larger model would be invaluable.
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% m-file for static control model.

% this program reads in 39 influence function files (1024 x 1), reads in or calculates an
% aberration file, uses a Hartmann sensor model, and lastly a least squares control

% algorithm.

% Program written by : Scott E. Winters

% Date: 7/98

% reading in 39 influence function files
clear

n=.1;
pause;
nif01REF4
pause(n)
nif02REF4
pause(n)
nif03REF4
pause(n)
nif04REF4
pause(n)
nifOSREF4
pause(n)
nifO6REF4
pause(n)
nifO07REF4
pause(n)
nifO8REF4
pause(n)
nifO9REF4
pause(n) R
nif10REF4
pause(n)
nif1 IREF4
pause(n)
nif12REF4
pause(n)
nif13REF4
pause(n)
nif14REF4
pause(n)
nif1SREF4
pause(n)
nif16REF4
pause(n)
nif17REF4
pause(n)
nif ISREF4
pause(n)
nifI9REF4
pause(n)
nif20REF4
pause(n)
nif2 1REF4
pause(n)
nif22REF4



pause(n)
nif23REF4
pause(n)
nif24REF4
pause(n)
nif25REF4
pause(n)
nif26REF4
pause(n)
nif27REF4
pause(n)
nif28REF4
pause(n)
nif29REF4
pause(n)
nif30REF4
pause(n)
nif31REF4
pause(n)
nif32REF4
pause(n)
nif33REF4
pause(n)
nif34REF4
pause(n)
nif35REF4
pause(n)
nif36REF4
pause(n)
nif37REF4
pause(n)
nif38REF4
pause(n)
nif39REF4
pause(n)
pause on

% develop Gp matrix "plant"; size (1024 x 39)

fori=1:32
for j=1:32

A(32*(1-1)4j,1)=C01(1,j);
A(32*(i-1)+j,2)=C02(i,));
A(32*(1-1)+,3)=C03(i,j);
A(32*(1-1)+j,4)=C04(1,));
A(32*(i-1)+j,5)=C05(i,j);
A(32*(1-1)+3,6)=CO06(i,j);
AB2*(-1)+43,7)=C07(1,));
A(32*(1-1)+4,8)=C08(i,j);
A(32*(i-1)4j,9)=C09(,));
A(32*(1-1)4§,10)=C10(i,j);
A(32*%(-1)+j,11)=C11(,));
A(32*(i-1)+j,12)=C12(i,));
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end

Gp=A;

A(32*(i-1)+j,13)=C13(i,j);
A(32*(i-1)44,14)=C14(,));
A(32*(i-1)4,15)=C15(,));
A(32*(i-1)+j,16)=C16(i,));
A(32*(1-1)+5,17)=C17(i,j);
A(32*(i-1)+j,18)=C18(i,));
A(32*(i-1)4§,19)=C19(,));
A(32*(i-1)+45,20)=C20(1,));
A(32*(i-1)4j,21)=C21(1,));
A(32%(i-1)+4,22)=C22(i,));
A(32*(i-1)4j,23)=C23(i,));
A32*(i-1)+j,24)=C24(i,));
A(32*%(1-1)4§,25)=C25(1,));
A(32%(i-1)4j,26)=C26(i,j);
AQ32*(i-1)+3,27)=C27(1,j);
A(32*(i-1)4,28)=C28(1,));
A(32*(i-1)4§,29)=C29(,));
A(32*(i-1)43,30)=C30(,));
A(32*(i-1)+§,31)=C31(,));
A(32*(i-1)+j,32)=C32(i,));
A(32*(i-1)+4j,33)=C33(1,));
A(32*(1-1)43,34)=C34(1,));
A(32*(i-1)4,35)=C35(,));
A(32%(i-1)4),36)=C36(i,));
A(32*(i-1)43,37)=C37(1i,));
A(32%(i-1)+j,38)=C38(1,));
A(32*(1-1)+),39)=C39(i,));
end

% Hartmann Sensor Model

% first the C-matrix - locates displacements over each actuator; size (39 x 1024)

for j=1:39
fori=1:1024
c(j,)=0;
end
end

¢(1,993)=1;
c(2,1003)=1;
¢(3,1014)=1;
c(4,1024)=1;
c(5,902)=1;
c(6,913)=1;
c(7,923)=1;
c(8,801)=1;
c(9,811)=1;

c(10,822)=1;
c(11,832)=1;
c(12,710)=1;
c(13,720)=1;
c(14,731)=1;

e
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c(15,609)=1;
c(16,619)=1;
c(17,630)=1;
c(18,640)=1;
c(19,518)=1;
c(20,528)=1;
c(21,539)=1;
c(22,385)=1;
c(23,395)=1;
c(24,406)=1;
c(25,416)=1;
c(26,293)=1;
c(27,304)=1;
c(28,315)=1;
c(29,193)=1;
¢(30,203)=1;
c(31,214)=1;
c(32,224)=1;
c(33,102)=1;
c(34,113)=1;
c(35,123)=1;
c(36,1)=1;
c(37,11)=1;
c(38,22)=1;
c(39,32)=1;

% B-matrix development - finite difference matrix; size (154 x 39)

for j=1:154
for i=1:39
b(j,1)=0;
end
end

%type 1 sensor
a=[1;4;,7;11;14;17;18;21;24;28;31;34,35;38;41;45;48;51;52;55;58;62;6
2

8;62;65;68,69;72;75];
e=[1;2;3;5;6,7;8;9;10;12;13;14;15;16;17;19;20;21;22;23;24;26;27;28;29;3
1

5

;29;30;31];
1=[3;6;9;10;13;16;20,23;26;27;30;33;37;40;43;44;47;50;54;57;60;6 1;64; 1,71;,74;77];
2=[2;3;4,5:6,7;9;10;11;12;13;14;16;17;18;19;20,21;23;24;25;26;27;28;30;31;32];

fori=1:27

Y% x-direction
b(a(i),e(i)+4)=0.0144;
b(a(i),e(i))=-0.0072;
b(a(i),e(i)+7)=-0.0072;
b(f(1),g(1)+3)=-0.0144;
b(f(i),g(i))=0.0072;
b(f(i),g(1)+7)=0.0072;

9oy-direction
b(a(i)+77,e(1))=0.0124;
b(a(i)+77,e(i)+7)=-0.0124;
b(f(1)+77,g(1))=0.0124;
b(f(1)+77,g(1)+7)=-0.0124;
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end

%type 1I sensor
a=[12;15;19;22;25;29;32;36;39;42;46,49,53;56,59;63;66];
e=[5;6;8;9;10;12;13;15;16;17;19;20;22;23;24;26;27];

fori=1:17

%x-direction
b(a(i),e(i))=-0.0144;
b(a(i),e(i)+7)=-0.0144;
b(a(i),e(1)+1)=0.0144;
b(a(i),e(i)+8)=0.0144;

%y-direction
b(a(i)+77,e(i))=0.00207;
b(a(i)+77,e(i)+7)=-0.00207;
b(a(i)+77,e(i)+1)=0.00207;
b(a(i)+77,e(1)+8)=-0.00207;
b(a(i)+77,e(i)-3)=0.00415;
b(a(i)+77,e(i)+11)=-0.00415;

end

% specific cases

% lenslets #2
b(2,1)=-0.0144;
b(2,1+7)=-0.0144;
b(2,1+1)=0.0144;
b(2,1+8)=0.0144,

b(2+77,1)=0.00207;
b(2+77,1+7)=-0.00207,
b(2+77,1+1)=0.00207;
b(2+77,148)=-0.00207;

b(2+77,1+11)=-0.00415;

% lenslets #5
b(5,2)=-0.0144;
b(5,2+7)=-0.0144;
b(5,2+1)=0.0144;
b(5,2+8)=0.0144;

b(5+77,2)=0.00207,
b(5+77,2+7)=-0.00207,
b(5+77,2+1)=0.00207;
b(5+77,2+8)=-0.00207;

b(5+77,2+11)=-0.00415;

% lenslets #8
b(8,3)=-0.0144;
b(8,3+7)=-0.0144;
b(8,3+1)=0.0144;
b(8,3+8)=0.0144;
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b(8+77,3)=0.00207;
b(8+77,3+7)=-0.00207;
b(8+77,3+1)=0.00207;
b(8+77,3+8)=-0.00207;

b(8+77,3+11)=-0.00415;

% lenslets #70
b(70,29)=-0.0144;
b(70,29+7)=-0.0144;
b(70,29+1)=0.0144;
b(70,29+8)=0.0144;

b(70+77,29)=0.00207;
b(70+77,29+7)=-0.00207,
b(70+77,29+1)=0.00207;
b(70+77,29+8)=-0.00207;
b(70+77,29-3)=0.00415;

% lenslets #73
b(73,30)=-0.0144;
b(73,30+7)=-0.0144;
b(73,30+1)=0.0144;
b(73,30+8)=0.0144;

b(73+77,30)=0.00207;
b(73+77,30+7)=-0.00207,
b(73+77,30+1)=0.00207;
b(73+77,30+8)=-0.00207,
b(73+77,30-3)=0.00415;

% lenslets #76
b(76,31)=-0.0144;
b(76,31+7)=-0.0144;
b(76,31+1)=0.0144;
b(76,31+8)=0.0144;

b(76+77,31)=0.00207;
b(76+77,31+7)=-0.00207;
b(76+77,31+1)=0.00207;
b(76+77,31+8)=-0.00207;
b(76+77,31-3)=0.00415;

% generate sensor matrix, Gs; size (154 x 1024)
Gs=b*c;

% set up displacements from function trying to fit "aberration"” or read aberration file
% load aberration % file must be saved as aberration.m ; size (1024 x 1)

for i=1:32
for j=1:32
PDF(32*(i-1)+j)=0.001; % flat input
%F(32*(i-1)+j)=0.000000105*x(j)"2; % 2nd order

%F(32*(i-1)4j)=0.00000000000065625*x(j)*4; % 4th order



F(32*(i-1)+j)=0.8*(0.000000105*x(1)*2+0.00000000000065625 *x(1)74);
end

F=F';
y=F,
% measure wavefront

r=Gs*y;

% generate error vector
€s=T;

% generate H matrix

H=Gs*Gp;

% Calculate actuator inputs coefficients using pseudo inverse and hartmann sensor
X=inv(H'*H)*H'*es;

% use when no Hartmann sensor, only data point displacements
%X=inv(A"*A)*A'*y;

% generate a matrix of the surface

for i=1:32
for j=1:32
F1(1,j)=F(32* (- 1)+j);
end

end

x=-200:12.9032:200;

y=X5

%display surface

mesh(x,y,F1)

title("Surface to Fit')

xlabel('(mm)")

ylabel('(mm)')

zlabel('Surface Displacement (mm)")
pause

Josuperposition
H=X(1,1)*CO1+X(2,1)*C02+X(3,1)*C03+X(4,1)*C04+X(5,1)*C05+X(6,1)*CO6+X (7
,1)*CO7+X(8,1)*C08+X(9,1)*C09+X(10,1)*C10+X(11,1)*C11+X(12,1)*C12+X(13,1
)*C13+X(14,1)*C14+X(15,1)*C15+X(16,1)*C16+X(17,1)*C17+X(18,1)*C18+X(19,1
)*C19+X(20,1)*C20+X(21,1)*C214X(22,1)*C22+X(23,1)*C23+X(24,1)*C24+X (25,1
Y*C25+X(26,1)*C26+X(27,1)*C27+X(28,1)*C28+X(29,1)*C29+X(30,1)*C30+X (31,1
)*C31+X(32,1)*C32+X(33,1)*C33+X(34,1)*C34+X(35,1)*C35+X(36,1)*C36+X(37,1
)*C37+X(38,1)*C38+X(39,1)*C39;

mesh(x,y,H)

title("Superposition of Influence Functions')

xlabel('(mm)")

ylabel('(mm)")
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zlabel('Surface Displacement (mm)')
pause

% generate a graph of the fitting error
=H-F1;

s=sum(E);

mean=sum(s)/1024;

% standard deviation

standard=0.0;
for i=1:32
for j=1:32
standard=standard+E(i,j)*E(i,);
end
end

sigma=sqrt(standard/1023);

mesh(x,y,E)

title(['Fitting Error - SIGMA =',num2str(sigma)})
xlabel('(mm)')

ylabel('(mm)")

zlabel('Surface Displacement (mm)")
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APPENDIX B - C-FIELD FOR A PIEZOELECTRIC
ACTUATOR.



It is first assumed that the unloaded actuator displacement "&" is a function of the
charge " ¢" on the capacitor. Based on experimental results, it is reasonable to assume that
the actuator displacement is a linear function of the charge (over the center portion of its

range)

6=aq (B.1)

where "a" is a scaling factor. Next, an energy function is developed which satisfies

Maxwell's reciprocity. A reasonable energy function is

_i k(x—aq)2 B2
E(x,q)-—2C+————2 (B.2)

where "x" is the displacement of the actuator if the charge is zero and "C" is the
capacitance. Now derivatives are taken of the energy function with respect to the

displacement " x" and charge "g¢" to develop a relationship for the force and voltage

respectively, resulting in the following expressions:

JE
F=—=k(x-a B.3
o, = Hx-aq) (B.3)
e =8—E=£—ak(x—aq)
d C
and Maxwell's reciprocity is proven
a—F =ak = % . (B.4)
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APPENDIX C - DERIVATION OF DYNAMIC EQUATIONS OF
MOTION



Using the Bond graphs, Figures 5.4 and 5.6 in Chapter 5, the equations of motions were

developed for the single actuator and seven actuator system.

The single actuator equations of motion are derived directly from the bond graph of Figure

5.4 using existing techniques. The state variables are first identified as g,,q,,45,p, The

input vector has a single entry of SE,. From this, the state equations are written directly as

1
45 =—(SE, —e;), (C.1)
R
g, =22, (C.2)
12
. R
P, = kg, —%—a and (C.3)
2
g =2 (C.4)
IZ

After further eXamination of equations C.1 through C.4, the four states can be simplified to

three since C.2 is equal to C.4. After this simplification and substitution of the C-field

representation derived in Appendix B, the equations are written as

. 1 q
gs = El:SE7 - [é— ak‘,(q4 - aqs)):l R (C.5)
q, = -11—71 and (C.6)
2
. R,
P, =~kq - _I& -k, (‘b - a%) . (C.7)

2

Equations C.5 through C.7 have been coded in Matlab for numerical simulation. These

results can be found in Appendix D.
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Next the equations of motion for the 7 actuator plate model are written. The procedure is
exactly the same as with the single actuator model, the equations are written directly from
the Bond graph of Figure 5.6. The same simplifications and C-fields have been used as
with the single actuator development. Due to the symmetrical nature of this problem, the

equations can be written in a compact form as

) P;
=5 CS8
q; 3 (C.8)
. 1 q, a
=—|SE -| 2 -—(q.- and C9
T R[ : (Ck C,-(q' aqk)ﬂ ©
) Rp. 1
p, = —__I ] ——C (‘Ii -aqk)——e,.f(qi) (C.10)

where,

1= (1;8;15;22;29;36;43),
1=(4;11;18;25;32;39;46),
J=(5;12;19;26;33;40;47),
k= (3;10;17;24;31;38:45) and

e, f(q,)= effort or force determined from stiffness matrix ¢ = Kg.

Equations C.8 through C.10, which total 21 for the seven actuator model, were coded
using Matlab in Appendix E. It should be mentioned that these equations are easily

expanded up to any dimension.
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APPENDIX D - SINGLE ACTUATOR MODEL CODE
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% m-file to look a SISO control for single actuator (single act. for plate)
% file name: actuatorl.m

% written by: Scott E. Winters

% date: 3/98

% parameters

12=0.50; % actuator/plate mass (Kg)
K1=2000000; % plate stiffness (N/m)

K4=1000000; % actuator stiffness (N/m)
RM=200.0; % mechanical resistance (N*s/m)
b=1.0; % actuator gain (non dimensional)
RE=100.0; % electrical resistance (ohms)
C5=.0000002; % actuator capacitance (Farads)
KP=0.01; % proportional gain (non dimensional)
KI1=4500.00; % integral gain (non dimensional)

% A-matirx

A=[0 112 0; -(K14+K4) -RM/I2 b*K4; b*K4/RE 0 -(1/C5+b*b*K4)/RE];
% B-matrix (10000000 constant is only needed to scale step response in Matlab)
B=[0; 0; 1000000/RE];

% C-matrix

C=[100];

% D-matirx;

D=[0];

% develop closed loop system (proprotional and integral controller) (y/d)
[num,den]=ss2tf(A,B,C,D,1);

num l=conv([KP KI],num);

denl=conv([1 0],den);

%numc=den]1;

%denc=denl+numl;

%[ Ac,Bc,Cc,Dcl=tf2ss(numc,denc);

% develop closed loop system (PI) (y/r)

numc=numl;

denc=denl4+num];
[Ac,Bc,Cc,Dcl=tf2ss(numc,denc);

% develop of L system to match for design purposes (y/d)



numl=[0 0 109654406.6];

denl=[1 10471.6 0];

%numlc=denl;

%denlc=denl+numl;

%[ Al,B1,C1,DI]=tf2ss(numlc,denlc);

% develop of L closed loop (y/r)

9onumlc=numl;
%denlc=denl+numl;
%[ Al,B1,Cl,DI}=tf2ss(numic,denic);

% step responses

9%1t=0:.00001:0.005;
%[yl,x1]=step(Al,B1,C1,Dl,1,t);
%(yc,xcl=step(Ac,Bc,Cc,Dc,1,t);
%ly,x]=step(num,den,t); % open loop response

% plotting step responses

Joplot(t,y,t,yc,t,yl);

%title('step response')
%ylabel('surface displacement (m)")
Joxlabel('time (sec.)')

% eigenvalues for closed loop systems

Toeig(A) % open loop poles
Joeig(Ac) % closed loop poles
Joeig(Al) % "L" matching poles

% bode plots
Jow=logspace(2,4);
%bode(A,B,C,D,1,w);
T=0:0.0001:0.02;
step(A,B,C,D,1,T);
%bode(Ac,Bc,Cc,Dc,1);
%bode(AlB1,C1,Dl1,1);
9%obode(numl,denl);
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APPENDIX E - MULTI-ACTUATOR MODEL CODE



% this m-file generates A,B, C and D matrices for a 7 actuator plate model

% which incorporates actuator dynamics. There are also 7 outputs for actuator

% position. Lu, Ly , T and S are also calculated. Both PI and H-infintiy controllers
% are developed.

% written by: Scott E. Winters

% date: Mar. 18, 1998

% system parameters

m=.5; % effective actuator/plate mass (Kg)
KA=1000000; % effective actuator stiffness (N/m)
R=200.0; % damping (N*s/m)

g=1.0; % actuator gain (displ./charge)
CA=0.0000002; % actuator/wire capacitance (Farads)
RE=100.0; % electrical resistance (Ohms)
K=2000000; % plate stiffness constant (N/m)
KP=1; % proportional gain

KI=1; % integral gain

BG=200000; % input gain to scale step response

% plate stiffness matrix using KA

% constants for plate
z1=KA/(6*K)
z2=KA/(12*K)
z3=(1-z1)/20 -

K11=K;
K12=-z1*K;
K13=-z1*K;
K14=-z1*K;
K15=-z3*K;
K16=-z3*K; -
K17=-z3*K;
K21=-z1*K;
K22=K;
K23=-z3*K;
K24=-z1*K;
K25=-z1*K;
K26=-23*K;
K27=-z3*K;

K31=-z1*K;
K32=-z3*K;
K33=K;

K34=-z1*K;
K35=-z3*K;
K36=-z1*K;
K37=-z3*K;

K41=-z2*K;
K42=-72*K;
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K43=-z2*%K;
K44=K;

K45=-z2*K;
K46=-z2*K;
K47=-z2*K;

K51=-z3*K;
K52=-z1*K;
K53=-z3*K;
K54=-z1*K;
K55=K;

K56=-z3*K;
K57=-z1*K;

K61=-23*K;
K62=-z3*K;
K63=-z1*K;
K64=-z1*K;
K65=-23*K;
K66=K;

K67=-z1*K;

K71=-z3*K;
K72=-z3*K;
K73=-z3*K;
K74=-z1*K;
K75=-z1*K;

K76=-z1*K;

K77=K;

KM=[K11 K12 K13 K14 K15 K16 K17;
K21 K22 K23 K24 K25 K26 K27,
K31 K32 K33 K34 K35 K36 K37,
K41 K42 K43 K44 K45 K46 K47,
K51 K52 K53 K54 K55 K56 K57;
K61 K62 K63 K64 K65 K66 K67,
K71 K72 K73 K74 K75 K76 K77];

KM=KM’;
KM

% A-matrix indices

a0101=0;
a0102=1/m;
a(103=0;
a0104=0;
a0105=0;
a0106=0;
a0107=0;
a0108=0;
a0109=0;
a0110=0;
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a0111=0;
a0112=0;
a0113=0;
a0114=0;
a0115=0;
a0116=0;
a0117=0;
a0118=0;
a0119=0;
a0120=0;
a0121=0;

a0201=-KA-K11;
a0202=-R/m;
a0203=+KA*g;
a0204=-K12;
a0205=0;
a0206=0;
a0207=-K13;
a0208=0;
a0209=0;
a0210=-K14;
a0211=0;
a0212=0;
a0213=-K15;
a0214=0; "
a0215=0;
a0216=-Ki5;
a0217=0;
a0218=0;
a0219=-K17;
a0220=0;
a0221=0;

a0301=g*KA/RE,;
a0302=0;
a0303=(-g*g*KA/RE)- 1/(RE*CA);
a0304=0;
a0305=0;
a0306=0;
a0307=0;
a0308=0;
a0309=0;
a0310=0;
a0311=0;
a0312=0;
a0313=0;
a0314=0;
a0315=0;
a0316=0;
a0317=0;
a0318=0;
a0319=0;
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a0320=0;
a0321=0;

a0401=0;
a0402=0;
a0403=0;
a0404=0;
a0405=1/m;
a0406=0;
a0407=0;
a0408=0;
a0409=0;
a0410=0;
a0411=0;
a0412=0;
a0413=0;
a0414=0;
a0415=0;
a0416=0;
a0417=0;
a0418=0;
a0419=0;
a0420=0;
a0421=0;

a0501=-K21;
a0502=0;
a0503=0;
a0504=-KA-K22;
a0505=-R/m;
a0506=KA*g;
a0507=-K23;
a0508=0;
a0509=0;
a0510=-K24;
a0511=0;
a0512=0;
a0513=-K25;
a0514=0;
a0515=0;
a0516=-K26;
a0517=0;
a0518=0;
a0519=-K27;
a0520=0;
a0521=0;

a0601=0;

a0602=0;

a0603=0;

a0604=g*KA/RE;

a0605=0;
a0606=(-g*g*KA/RE)-1/(RE*CA);
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a0607=0;
a0608=0;
a0609=0;
a0610=0;
a0611=0;
a0612=0;
a0613=0;
a0614=0;
a0615=0;
a0616=0;
a0617=0;
a0618=0;
a0619=0;
a0620=0;
a0621=0;

a0701=0;
a0702=0;
a0703=0;
a0704=0;
a0705=0;
a0706=0;
a0707=0;
a0708=1/m;
a0709=0;
a0710=0;
a0711=0;
a0712=0;
a0713=0;
a0714=0;
a0715=0;
a0716=0;
a0717=0;
a0718=0;
a0719=0;
a0720=0;
a0721=0;

a0801=-K31;
a0802=0;
a0803=0;
a0804=-K32;
a0805=0;
a0806=0;
a0807=-KA-K33;
a0808=-R/m;
a0809=KA*g;
a0810=-K34;
a0811=0;
a0812=0;
a0813=-K35;
a0814=0;
a0815=0;
a0816=-K36;
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a0817=0;
a0818=0;
a0819=-K37;
a0820=0;
a0821=0;

a0901=0;
a0902=0;
a0903=0;
a0904=0;
a0905=0;
a0906=0;
a0907=g*KA/RE;
a0908=0;
a0909=(-g*g*KA/RE)-1/(RE*CA);
a0910=0;
a0911=0;
a0912=0;
a0913=0;
a0914=0;
a0915=0;
a0916=0;
a0917=0;
a0918=0;
a0919=0;
a0920=0;
a0921=0;

al001=0;
a1002=0;
al003=0;
a1004=0;
a1005=0;
al1006=0;
a1007=0;
a1008=0;
a1009=0;
al010=0;
alOl1=1/m;
al012=0;
a1013=0;
al014=0;
al015=0;
al016=0;
al017=0;
al018=0;
a1019=0;
a1020=0;
al021=0;

al101=-K41;
al102=0;
al1103=0;



al104=-K42;
al105=0;
al106=0;
al107=-K43;
al1108=0;
al1109=0;
al110=-KA-K44;
alll1=-R/m;
all12=KA*g;
all113=-K45;
al114=0;
all15=0;
all116=-K46;
all17=0;
al118=0;
all19=-K47;
al120=0;
all121=0;

al201=0;
al1202=0;
a1203=0;
a1204=0;
al205=0;
a1206=0;
al1207=0;
a1208=0;
al1209=0;
al210=g*KA/RE;
al211=0;

a1212=(-g*g*KA/RE)-1/(RE*CA):;

al213=0;
al214=0;
al215=0;
al216=0;
al217=0;
al1218=0;
al219=0;
al1220=0;
al221=0;

a1301=0;
al302=0;
al303=0;
al1304=0;
al305=0;
al306=0;
al1307=0;
al1308=0;
a1309=0;
al1310=0;
al311=0;
al312=0;
al313=0;
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al314=1/m;
al315=0;
al316=0;
al317=0;
al318=0;
al319=0;
al1320=0;
al321=0;

al401=-K51;
al1402=0;
a1403=0;
a1404=-K52;
a1405=0;
a1406=0,
al407=-K53;
a1408=0;
a1409=0;
al410=-K54;
al411=0;
al412=0;

al413=-KA-KSS;

al414=-R/m;

al415=KA*g;

al416=-K56;
al417=0;
ai418=0;
al419=-K57;
ai1420=0;
al421=0;

al1501=0;
al1502=0;
a1503=0;
al504=0;
al1505=0;
al506=0;
al507=0;
al508=0;
a1509=0;
al510=0;
al511=0;
al512=0;

al513=g*KA/RE

al514=0;

al515=(-g*g*KA/RE)-1/(RE*CA);

al516=0; -
al517=0;
al518=0;
al519=0;
al520=0;
al521=0;

al601=0;
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a1602=0;
a1603=0;
al604=0;
al1605=0;
a1606=0;
a1607=0;
a1608=0;
a1609=0;
a1610=0;
al6l11=0;
al612=0;
al613=0;
a1614=0;
al615=0;
al616=0;
alé6l7=1/m;
al618=0;
a1619=0;
al1620=0;
al621=0;

al701=-Ké61;
al702=0;
al703=0;
al704=-K62;
al705=0;
al1706=0;
al707=-K63;
a1708=0;
al1709=0;
al710=-K64;
al711=0;
al712=0;
al713=-K65;
al714=0;
al715=0;

al716=-KA-K66;

al717=-R/m;
al718=KA*g;
al719=-K67;
al1720=0;
al721=0;

al801=0;
al1802=0;
al1803=0;
al804=0:;
al805=0;
al1806=0;
al1807=0;
al808=0;
al809=0;
al810=0;
al811=0;
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al812=0;
al1813=0;
al814=0;
al815=0;

al816=g*KA/RE;

al817=0;

al818=(-g*g*KA/RE)-1/(RE*CA)

al819=0;
al1820=0;
al821=0;

al1901=0;
a1902=0;
a1903=0;
a1904=0;
a1905=0;
a1906=0;
al907=0;
a1908=0;
a1909=0;
al1910=0;
al911=0;
al912=0;
al913=0;
a1914=0;
al915=0;
al916=0;
al917=0;
21918=0;
a1919=0;
al920=1/m;
a1921=0;

a2001=-K71;
a2002=0;
a2003=0;
a2004=-K72;
a2005=0;
a2006=0;
a2007=-K73;
a2008=0;
a2009=0;
a2010=-K74;
a2011=0;
a2012=0;

a2013=-K75;

a2014=0;. .
a2015=0;
a2016=-K76;
a2017=0;
a2018=0;

a2019=-KA-K77,

a2020=-R/m;
a2021=KA*g;
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a2101=0;
a2102=0;
a2103=0;
a2104=0;
a2105=0;
a2106=0;
a2107=0;
a2108=0;
a2109=0;
a2110=0;
a2111=0;
a2112=0;
a2113=0;
a2114=0;
a2115=0;
a2116=0;
a2117=0;
a2118=0;
a2119=g*KA/RE,;
a2120=0;
a2121=(-g*g*KA/RE)-1/(RE*CA);

A=[a0101 a0102 a0103 a0104 a0105 a0106 a0107 a0108 a0109 a0110 a0111 a0112 a0113
a0114 a0115 a0116 20117 a0118 a0119 a0120 a0121;

a0201 a0202 a0203 a0204 a0205 a0206 a0207 a0208 a0209 a0210 a0211 a0212 a0213
a0214 a0215 a0216 a0217 a0218 a0219 a0220 a0221;

a0301 a0302 a0303 a0304 a0305 a0306 a0307 a0308 a0309 a0310 a0311 a0312 a0313
20314 20315 a0316 a0317 a0318 a0319 a0320 a0321;

a0401 a0402 a0403 a0404 a0405 a0406 a0407 a0408 a0409 a0410 a0411 a0412 a0413
a0414 a0415 a0416 a0417 a0418 a0419 a0420 a0421;

20501 a0502 a0503 a0504 a0505 a0506 a0507 a0508 a0509 a0510 a0511 a0512 a0513
a0514 a0515 a0516 a0517 a0518 a0519 a0520 a0521;

a0601 a0602 a0603 a0604 a0605 a0606 a0607 a0608 a0609 a0610 a0611 a0612 a0613
a0614 a0615 a0616 a0617 a0618 a0619 a0620 a0621:;

a0701 a0702 a0703 a0704 a0705 a0706 a0707 a0708 a0709 a0710 a0711 a0712 a0713
a0714 a0715 a0716 a0717 a0718 a0719 a0720 a0721;

a0801 a0802 a0803 a0804 a0805 a0806 a0807 a0808 a0809 a0810 a0811 a0812 a0813
a0814 a0815 a0816 a0817 a0818 a0819 a0820 a0821;

a0901 a0902 a0903 a0904 a0905 a0906 a0907 a0908 a0909 a0910 a0911 a0912 a0913
a0914 a0915 a0916 a0917 a0918 a0919 a0920 a0921;

al001 a1002 a1003 a1004 a1005 a1006 a1007 a1008 a1009 a1010 al011 al012 a1013
al014 al015 al016 a1017 a1018 a1019 a1020 a1021;

all01 a1102 a1103 a1104 a1105 a1106 a1107 a1108 a1109 al110alll11 al112 a1113
alll4 alll5alll6alll7all18 al119 al120 al121;

al201 a1202 a1203 al1204 a1205 a1206 a1207 a1208 a1209 al1210 al211 al212 al213
al214 21215 al216 al217 al218 al219 a1220 a1221;

al301 al1302 a1303 a1304 al1305 a1306 a1307 a1308 a1309 al1310 al311 al312 al313
al314 al315al316 a1317 al318 al1319 al1320 al321;

al401 a1402 a1403 al404 al405 a1406 a1407 a1408 a1409 al410 al411 al412 a1413
al414 al415 al416 al417 al418 al419 a1420 al421;

al501 a1502 a1503 a1504 a1505 a1506 a1507 a1508 a1509 al1510 al511 a1512 a1513
al514 al515 al516 al517 al518 a1519 al520 al521;
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al601 a1602 a1603 a1604 a1605 a1606 a1607 a1608 a1609 al610 al611 al612 al613
al614 al615al1616 al1617 al618 al619 al620 al621;
al701 a1702 a1703 al704 a1705 al706 a1707 a1708 a1709 al710 al711 al712 al713
al714 al715al1716 al717 al718 al719 al1720 al721,
al801 al802 a1803 a1804 a1805 a1806 a1807 a1808 al809 a1810 a1811 al812 al813
al814 al1815al1816al817 al818 a1819 al1820 al821;
al901 a1902 a1903 a1904 a1905 a1906 a1907 a1908 a1909 a1910 a1911 a1912 a1913
al914 a1915 al916 a1917 a1918 a1919 a1920 a1921;
a2001 a2002 a2003 a2004 a2005 a2006 a2007 a2008 a2009 a2010 a2011 a2012 a2013
a2014 a2015 a2016 a2017 a2018 a2019 a2020 a2021;
a2101 a2102 a2103 a2104 a2105 a2106 a2107 a2108 a2109 a2110 a2111 a2112 a2113
a2114 a2115a2116 a2117 a2118 a2119 a2120 a2121];

% B-matrix

b0101=0;
b0102=0;
b0103=0;
b0104=0;
b0105=0;
b0106=0;
b0107=0;

b0201=0;
b0202=0;
b0203=0;
b0204=0;
b0205=0;
b0206=0;
b0207=0;

b0301=BG/RE;
b0302=0;
0303=0;
b0304=0;
b0305=0;
b0306=0;
b0307=0;

b0401=0;
b0402=0;
b0403=0;
b0404=0;
b0405=0;
b0406=0;
b0407=0;
b0501=0;
b0502=0;
b0503=0;
b0504=0;
b0505=0;
b0506=0;
b0507=0;
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b0601=0;
b0602=BG/RE;
b0603=0;
b0604=0;
b0605=0;
b0606=0;
b0607=0;

b0701=0;
b0702=0;
b0703=0;
b0704=0;
b0705=0;
b0706=0;
b0707=0;

b0801=0;
b0802=0;
b0803=0;
b0804=0;
b0805=0;
b0806=0;
b0807=0;

b0901=0;
b0902=0;
b0903=BG/RE;
50904=0;
b0905=0;
b0906=0;
b0907=0;

01001=0;
b1002=0;
b1003=0;
b1004=0;
b1005=0;
b1006=0;
b1007=0;

b1101=0;

b1102=0;

b1103=0;

b1104=0;

b1105=0;

b1106=0; S
b1107=0;

b1201=0;
b1202=0;
b1203=0;
b1204=BG/RE,
b1205=0;
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b1206=0;
b1207=0;

b1301=0;
b1302=0;
b1303=0;
b1304=0;
b1305=0;
b1306=0;
b1307=0;

b1401=0;
b1402=0;
b1403=0;
b1404=0;
b1405=0;
b1406=0;
b1407=0;

b1501=0;
b1502=0;
b1503=0;
b1504=0;
b1505=BG/RE;
b1506=0;
b1507=0;

b1601=0;
51602=0; -
b1603=0;
b1604=0;
b1605=0;
b1606=0;
b1607=0;

b1701=0;
b1702=0;
b1703=0;
b1704=0;
b1705=0;
b1706=0;
b1707=0;

b1801=0;

b1802=0;

b1803=0;

51804=0; o
b1805=0;

b1806=BG/RE;

b1807=0;

b1901=0;
b1902=0;
b1903=0;
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b1904=0;
b1905=0;
b1906=0;
b1907=0;

b2001=0;
b2002=0;
b2003=0;
b2004=0;
b2005=0;
b2006=0;
b2007=0;

b2101=0;
b2102=0;
b2103=0;
b2104=0;
b2105=0;
b2106=0;
b2107=BG/RE;

B=[b0101 b0102 b0103 b0104 b0105 b0106 b0107;
b0201 b0202 0203 b0204 b0205 b2106 b0207;
b0301 b0302 b0303 b0304 b0305 b0306 b0307,
b0401 b0402 b0403 b0404 b0405 b0406 b0407;
b0501 b0502 b0503 b0504 bO505 b0506 b0507;
b0601 b0602 b0603 b0604 b0605 b0606 bO607;
b0701 b0702 b0703 b0704 bO705 bO706 b0707;
50801 b0802 b0803 b0804 b080S5 b0806 bO8O7;
b0901 b0902 b0903 b0904 b0905 b0906 bO907;
b1001 b1002 b1003 b1004 b1005 b1006 b1007;
b1101 b1102 b1103 b1104 b1105 b1106 b1107;
b1201 b1202 b1203 b1204 b1205 b1206 b1207;
b1301 b1302 b1303 b1304 b1305 b1306 b1307;
b1401 b1402 1403 b1404 b1405 b1406 b1407,
b1501 b1502 b1503 b1504 b1505 b1506 b1507;
b1601 b1602 b1603 b1604 b1605 b1606 b1607;
b1701 1702 b1703 b1704 b1705 b1706 b1707;
b1801 b1802 b1803 b1804 b1805 b1806 b1807;
b1901 b1902 b1903 b1904 b1905 b1906 b1907;
b2001 b2002 b2003 b2004 b2005 b2006 b2007;
b2101 2102 b2103 b2104 b2105 b2106 b2107];

% C-matrix

c0101=1;
~0102=0; C
c0103=0;
c0104=0;
c0105=0;
c0106=0;
c0107=0;
c0108=0;
c0109=0;
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c0110=0;
c0111=0;
c0112=0;
c0113=0;
c0114=0;
c0115=0;
c0116=0;
c0117=0;
c0118=0;
c0119=0;
c0120=0;
c0121=0;

c0201=0;
c0202=0;
¢c0203=0;
c0204=0;
c0205=0;
c0206=0;
c0207=0;
c0208=0;
c0209=0;
c0210=0;
c0211=0;
c0212=0;
c0213=0;
c0214=0;
c0215=0;
c0216=0;
c0217=0;
c0218=0;
c0219=0;
c0220=0;
c0221=0;

c0301=0;
c0302=0;
c0303=0;
c0304=0;
c0305=0;
c0306=0;
c0307=0;
c0308=0;
c0309=0;
¢0310=0;
c0311=0;
c0312=0;
c0313=0;
c0314=0;
c0315=0;
c0316=0;
c0317=0;
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c0318=0;
c0319=0;
c0320=0;
c0321=0;

c0401=0;
c0402=0;
c0403=0;
c0404=1;
c0405=0;
c0406=0;
c0407=0;
c0408=0;
c0409=0;
c0410=0;
c0411=0;
c0412=0;
c0413=0;
c0414=0;
c0415=0;
c0416=0;
c0417=0;
c0418=0;
c0419=0;
c0420=0;
c0421=0;

c0501=0;
c0502=0;
¢c0503=0;
c0504=0;
c0505=0;
¢c0506=0;
c0507=0;
c0508=0;
c0509=0;
c0510=0;
c0511=0;
c0512=0;
c0513=0;
c0514=0;
c0515=0;
c0516=0;
c0517=0;
c0518=0;
c0519=0;
c0520=0;
c0521=0;

c0601=0;
c0602=0;
c0603=0;
c0604=0;
c0605=0;
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c0606=0;
c0607=0;
c0608=0;
c0609=0;
c0610=0;
c0611=0;
c0612=0;
c0613=0;
c0614=0;
c0615=0;
c0616=0;
c0617=0;
c0618=0;
c0619=0;
c0620=0;
c0621=0;

c0701=0;
c0702=0;
c0703=0;
c0704=0;
c0705=0;
c0706=0;
c0707=1;
c0708=0;
c0709=0;
c0710=0;
c0711=0;
c0712=0;
c0713=0;
c0714=0;
c0715=0;
c(0716=0;
c0717=0;
c0718=0;
c0719=0;
c0720=0;
c0721=0;

c0801=0;
c0802=0;
c0803=0;
c0804=0;
c0805=0;
c0806=0;
c0807=0;
c0808=0;
c(0809=0;
c0810=0;
c0811=0;
c0812=0;
c0813=0;
c0814=0;
c0815=0;
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c0816=0;
c0817=0;
c0818=0;
c0819=0;
c0820=0;
c0821=0;

c0901=0;
c0902=0;
c0903=0;
¢c0904=0;
c0905=0;
c0906=0;
c0907=0;
¢c0908=0;
c0909=0;
c0910=0;
c0911=0;
c0912=0;
¢c0913=0;
c0914=0;
c0915=0;
¢0916=0;
c0917=0;
c0918=0;
¢0919=0;
c(0920=0;
c0921=0;

c1001=0;
c1002=0;
¢1003=0;
c1004=0;
c1005=0;
¢1006=0;
c1007=0;
c1008=0;
c1009=0;
cl1010=1;
c1011=0;
c1012=0;
c1013=0;
c1014=0;
c1015=0;
c1016=0;
c1017=0;
c1018=0;
c1019=0;
c1020=0;
c1021=0;

c1101=0;
c1102=0;
c1103=0;



c1104=0;
c1105=0;
¢c1106=0;
cl1107=0;
c1108=0;
c1109=0;
c1110=0;
cl111=0;
cl1112=0;
c1113=0;
c1114=0;
cl1115=0;
cl1116=0;
c1117=0;
c1118=0;
c1119=0;
c1120=0;
c1121=0;

c1201=0;
¢c1202=0;
c1203=0;
c1204=0;
c1205=0;
c1206=0;
c1207=0;
c1208=0;
c1209=0;
¢1210=0;
cl1211=0;
c1212=0;
c1213=0;
c1214=0;
c1215=0;
c1216=0;
cl1217=0;
c1218=0;
c1219=0;
c1220=0;
c1221=0;

c1301=0;
c1302=0;
c1303=0;
c1304=0;
c1305=0;
c1306=0;
c1307=0;
c1308=0;
c1309=0;
c1310=0;
c1311=0;
c1312=0;
c1313=1;
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c1314=0;
c1315=0;
c1316=0;
c1317=0;
c1318=0;
c1319=0;
c1320=0;
c1321=0;

c1401=0;
c1402=0;
c1403=0;
c1404=0;
c1405=0;
¢1406=0;
c1407=0;
¢1408=0;
¢c1409=0;
c1410=0;
cl411=0;
cl412=0;
c1413=0;
c1414=0;
c1415=0;
cl416=0;
c1417=0;
c1418=0;
c1419=0;
c1420=0;
c1421=0;

c1501=0;
c1502=0;
c1503=0;
c1504=0;
c1505=0;
c1506=0;
¢1507=0;
c1508=0;
c1509=0;
c1510=0;
c1511=0;
c1512=0;
c1513=0;
c1514=0;
cl1515=0;
c1516=0;
cl1517=0;
c1518=0;
c1519=0;
c1520=0;
c1521=0;

c1601=0;
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c1602=0;
c1603=0;
c1604=0;
c1605=0;
c1606=0;
c1607=0;
c1608=0;
¢1609=0;
c1610=0;
cl1611=0;
c1612=0;
c1613=0;
cl1614=0;
c1615=0;
cl6loe=1;
cl617=0;
c1618=0;
c1619=0;
c1620=0;
c1621=0;

c1701=0;
c1702=0;
c1703=0;
c1704=0;
c1705=0;
c1706=0;
c1707=0;
c1708=0;
c1709=0;
c1710=0;
cl711=0;
cl1712=0;
c1713=0;
c1714=0;
c1715=0;
cl1716=0;
cl1717=0;
c1718=0;
c1719=0;
c1720=0;
c1721=0;

c1801=0;
c1802=0;
c1803=0;
c1804=0;
c1805=0;
c1806=0;
c1807=0;
c1808=0;
c1809=0;
c1810=0;
cl1811=0;



c1812=0;
c1813=0;
c1814=0;
c1815=0;
c1816=0;
c1817=0;
c1818=0;
c1819=0;
c1820=0;
c1821=0;

¢1901=0;
c1902=0;
c1903=0;
¢1904=0;
c1905=0;
c1906=0;
c1907=0;
c1908=0;
c1909=0;
c1910=0;
c1911=0;
c1912=0;
c1913=0;
c1914=0;
c1915=0;
c1916=0;
c1917=0;
c1918=0;
c1919=1;
¢1920=0;
c1921=0;

c2001=0;
¢c2002=0;
¢c2003=0;
c2004=0;
¢2005=0;
¢2006=0;
c2007=0;
c2008=0;
c2009=0;
c2010=0;
c2011=0;
c2012=0;
c2013=0;
c2014=0;
c2015=0;
c2016=0;
c2017=0;
c2018=0;
¢c2019=0;
¢2020=0;
c2021=0;
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c2101=0;
c2102=0;
¢2103=0;
c2104=0;
c2105=0;
¢c2106=0;
c2107=0;
c2108=0;
c2109=0;
c2110=0;
c2111=0;
c2112=0;
c2113=0;
c2114=0;
c2115=0;
c2116=0;
c2117=0;
c2118=0;
c2119=0;
c2120=0;
c2121=0;

C=[c0101 c0102 c0103 c0104 c0105 c0106 c0107 c0108 c0109 c0110c0111 c0112 c0113

c0114 c0115c0116c0117 c0118 c0119 ¢0120 c0121;

c0401 c0402 c0403 c0404 c0405 c0406 c0407 c0408 c0409 c0410 c0411 c0412 c0413
c0414 c0415 c0416 c0417 c0418 c0419 c0420 c0421;
cO701cO70200703c0704cO705cO706cO707cO708cO709cO710c0711cO712c0713
c0714 c0715 c0716 c0717 c0718 c0719 c0720 c0721; :
clOOl0100201003c1004c1005c100601007010080100901010010110101201013
c1014 c1015 ¢c1016 c1017 ¢1018 ¢1019 ¢1020 c1021;

c1301 ¢1302 ¢1303 c1304 ¢1305 ¢1306 ¢1307 ¢1308 ¢1309 ¢1310c1311 c1312c1313
c1314 c1315¢1316 ¢c1317 ¢1318 ¢c1319 ¢1320 ¢c1321;

c1601 c1602 c1603 c1604 c1605 c1606 c1607 c1608 c1609 c1610c1611 ¢c1612 c1613
cl614¢c1615¢c1616 c1617 ¢1618 ¢c1619 c1620 c1621;

c1901 1902 ¢1903 c1904 c1905 c1906 c1907 c1908 c1909 ¢1910c1911 ¢1912 ¢c1913
c1914 ¢c1915c1916 ¢1917 c1918 ¢1919 ¢1920 c1921];

% D-matrix

D=[0000000;

0000000;

0000000;

0000000;

0000000;

0000000 R
00000001

% eigenvalues for open loop system
Joeig(A)

% Step response for open loop system
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t=0:0.00001:0.02;

grid on
[x0,yo0,t]=step(A,B,C,D,4,t);
%step(A,B,C,D)
plot(t,yo(:,10),'r',t,yo(:,1),'b");
%grid

title('step response')
ylabel('displacement’)
xlabel('time (sec)")

pause

% Frequency plot for open loop system
w=logspace(1,4);
sigma(A,B,C,D,w)

pause

o %o %0 %o To To %o To T To %o %o %o %o P1 controller o % %o %o %o To %o %o To Fo %o %o To Yo To %o %o Yo

Al=[0000000;
0000000;
0000000;
0000000;
0000000;
0000000;
0000000];

C1=[KI000000;
0KI00000;
0O0OKIO0O0O;
0O0OOKIO0O0O0;
000O0KIOO;
0000O0KIO;
000000KI];

Bi=[1000000;
0100000;
0010000;
0001000;
0000100;
0000010;
0000001];

D1=[KP000000;
0KP000O0O;
00KPO0OOO;
000KPO0ODO;
0000KPO0O;
00000KPO;
00000 0KP;

[Ay,By,Cy,Dy]=SERIES(A,B,C.D,A1,B1,C1,D1);

i
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w=logspace(1,4);
sigma(Ay,By,Cy,Dy,w)

pause
% determine T
[Ac,Bc,Cc,Dc]=CLOOP(Ay,By,Cy,Dy,-1);
sigma(Ac,Bc,Cc,Dc,w)

pause

% Determine S, must be used with T
I=eye(7);

as=Ac;

bs=Bc;

cs=-Cc;

ds=I-Dc;

sigma(as,bs,cs,ds,w);

pause

t=0:0.00001:0.05;

Yoeig(Ac)

Yoy, t}=step(Ac,Bc,Cc,Dc,4);

Yostep(Ac,Bc,Cc,Dc);

Joplot(t(:,4),y(:,4),'r',t(:,1),y(:,:,1),'D");

for i=1:5001

u(i,1)=0.0;

u(1,2)=0.0; T
u(i,3)=0.0;

u(i,4)=0.024; ‘ TR
u(i,5)=0.0;
u(i,6)=0.0;
- u(1,7)=0.0;
end
isim(Ac,Bc,Cc,Dc,u,t);

title('step response for PI controller’)
ylabel('displacement')

xlabel('time (sec)")

o %0 % Fo % % H-inf Design %o % %o %o Yo %o %o T To Yo To To To Yo o %o To To Fo To To Yo Fo To Yo To To Jo Yo
% Weighting matrix W1

numa=[1 100000];

dena=[100000 1];
W1=[numa;dena;numa;dena;numa;dena;numa;dena;numa;dena;numa;dena;numa;denal;
% Weighting matirx W2

W2=(];

% Weighting matrix W3

numb=[1 0 0 0];
denb=[0 0 0 100000000000];
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W3=[numb;denb;numb;denb;numb;denb;numb;denb;numb;denb;numb;denb;numb;denb];

% Create the data structure

ssg=mksys(A,B,C,D);

% Create the data structure for the augmented system
ssga=augtf(ssg, W1,W2,W3);

% Compute a controller K to minimize IT(zu)lk1

[ssk,sscl}=hinf(ssga);

% Determine the state realization of controller K
[ak,bk,ck,dk]=branch(ssk);

% Determine singular value plot of [Tzwl
Yosigma(sscl);

% Determine L=GK from series command

tal,bl,cl,dl]=series(ak,bk,ck,dk,A,B,C,D);
w=logspace(0,4);
sigma(al,bl,cl,dl,w);

pause
% Determine T

[at,bt,ct,dt]=CLOOP(al,bl,cl,dl,-1);
sigma(at,bt,ct,dt,w);

pause

% Determine S, must be used with T
I=eye(7);

as=at;

bs=bt;

cs=-ct;

ds=I-dt;

sigma(as,bs,cs,ds,w);

pause

% Step Response
%1=0:0.00001:0.02;

%[ x,y,t}=step(at,bt,ct,dt,4,t);
Yostep(at,bt,ct,dt);



Foplot(t,y(:,10),'r 1, 1),y(:,1),'b")

%title('step response')
%ylabel('displacement’)
%xlabel('time (sec)")

t=0:0.00001:0.05;
Joeig(Ac)
%[y,t]=step(Ac,Bc,Cc,Dc,4);
%step(Ac,Bc,Cc,Dc);
Poplot(t(:,4),y(:,4),T,t(:,1),y(:,:,1),'b');
for i=1:5001

u(i,1)=0.0;

u(i,2)=0.0;

u(i,3)=0.0;

u(i,4)=0.024;

u(i,5)=0.0;

u(i,6)=0.0;

u(i,7)=0.0;
end
Isim(at,bt,ct,dt,u,t);
title('step response for H-inf. controller’)
ylabel('displacement’)
xlabel('time (sec)’)

164





